scholarly journals Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios

2017 ◽  
Vol 10 (3) ◽  
pp. 246-255 ◽  
Author(s):  
Hojat Karami ◽  
Saeed Farzin ◽  
Mohammad Tavakol Sadrabadi ◽  
Hasan Moazeni
Keyword(s):  
Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 828
Author(s):  
Joana Baltazar ◽  
Elsa Alves ◽  
Gökçen Bombar ◽  
António Heleno Cardoso

This laboratory study focused on the effect of a submerged vane-field on the flow pattern and bed morphology near and inside the entrance reach of a movable bed 90° lateral diversion. The system was modelled under live bed conditions for a water discharge ratio of ≈0.2. Two experiments were run until bed equilibrium was reached: with and without a vane-field installed close to the diversion entrance to control the transfer of sediments into the diversion channel. The equilibrium bed morphology and the associated 3D flow field were measured in great detail. The bed load diverted into the diversion was reduced by approximately one quarter due to the action of the vane-field. The vanes prevented the formation of the diversion vortex in the main channel, upstream of the diversion’s entrance, thus contributing to that decrease. They also created a main channel vortex that started at the most upstream vanes and further decreased the amount of bed load entering the diversion. The flow separation zone inside the diversion was larger with vanes, but conveyance was balanced through a slightly deeper scour trench therein. The flow structures described were confirmed through the measurements of the turbulent kinetic energy.


Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Sign in / Sign up

Export Citation Format

Share Document