Effect of an Angled Runner on the Fluid Flow Pattern in the Ingot Casting Process

Author(s):  
M. Ersson ◽  
P. Jönsson ◽  
J. Yin
2009 ◽  
Vol 620-622 ◽  
pp. 375-378
Author(s):  
Kyung Wook Jang ◽  
Jung Il Lee ◽  
Joo Ho Lee ◽  
Kyoung Won Cho ◽  
Good Sun Choi ◽  
...  

In the present study, the fluid flow and the heat transfer with solidification analyses for the Cu thin wire production by OCC (Ohno Continuous Casting) process. The OCC process is widely used to produce cylindrical column castings continuously, a number of researches have been focused on the OCC process. However, few researches on the production of Cu thin wire by the OCC process have been reported, therefore it is necessary to investigate and optimize the process variables of the OCC process when producing the Cu thin wires. A commercial multiphysics software was used to analyse to the flow pattern and the temperature distribution in the OCC system proposed in the present study. Effect of the casting speed, the OCC mold temperature, the melt temperature on the castablility of the thin Cu wire and flow pattern and temperature distribution of the melt were discussed. It is expected that the present study is able to give the design parameters of the OCC system for production of Cu thin wire before the actual OCC system construction.


1947 ◽  
Vol 14 (2) ◽  
pp. A113-A118
Author(s):  
C. Concordia ◽  
G. K. Carter

Abstract The objects of this paper are, first, to describe an electrical method of determining the flow pattern for the flow of an incompressible ideal fluid through a two-dimensional centrifugal impeller, and second, to present the results obtained for a particular impeller. The method can be and has been applied to impellers with blades of arbitrary shape, as distinguished from analytical methods which can be applied directly only to blades of special shape (1).


Author(s):  
Adán Ramirez-Lopez ◽  
Omar Davila-Maldonado ◽  
Alfronso Nájera-Bastida ◽  
Rodolfo Morales ◽  
Jafeth Rodríguez-Ávila ◽  
...  

Steel is one of the essential materials in the world's civilization. It is essential to produce many products such as pipelines, mechanical elements in machines, vehicles, profiles, and beam sections for buildings in many industries. Until the '50s of the 20th century, steel products required a complex process known as ingot casting; for years, steelmakers focused on developing and simplifying this process. The result was the con-tinuous casting process (CCP); it is the most productive method to produce steel. The CCP allows producing significant volumes of steel sections without interruption and is more productive than the formal ingot casting process. The CCP begins by transferring the liquid steel from the steel-ladle to a tundish. This tundish or vessel distributes the liquid steel, by flowing through its volume, to one or more strands having wa-ter-cooled copper molds. The mold is the primary cooling system, PCS, solidifying a steel shell to withstand a liquid core and its friction forces with the mold wall. Further down the mold, the rolls drive the steel section in the SCS. Here the steel section is cooled, solidifying the remaining liquid core, by sprays placed in every cooling segment all around the billet and along the curved section of the machine. Finally, the steel strand goes towards a horizontal-straight free-spray zone, losing heat by radiation mechanism, where the billet cools down further to total solidification. A moving torch cutting-scissor splits the billet to the desired length at the end of this heat-radiant zone.


2020 ◽  
Vol 59 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Yanzhao Luo ◽  
Chenxi Ji ◽  
Wenyuan He ◽  
Yanqiang Liu ◽  
Xiaoshan Yang ◽  
...  

2019 ◽  
Vol 9 (20) ◽  
pp. 4359 ◽  
Author(s):  
Saima Noreen ◽  
Sadia Waheed ◽  
Abid Hussanan ◽  
Dianchen Lu

This article explores the heat and transport characteristics of electroosmotic flow augmented with peristaltic transport of incompressible Carreau fluid in a wavy microchannel. In order to determine the energy distribution, viscous dissipation is reckoned. Debye Hückel linearization and long wavelength assumptions are adopted. Resulting non-linear problem is analytically solved to examine the distribution and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern through perturbation technique. This model is also suitable for a wide range of biological microfluidic applications and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern.


Sign in / Sign up

Export Citation Format

Share Document