scholarly journals Contact-dependent inhibition of HIV-1 replication in ex vivo human tonsil cultures by polymorphonuclear neutrophils

2021 ◽  
Vol 2 (6) ◽  
pp. 100317
Author(s):  
Tatjana Reif ◽  
Gerhard Dyckhoff ◽  
Ralph Hohenberger ◽  
Carl-Christian Kolbe ◽  
Henning Gruell ◽  
...  
2005 ◽  
Vol 79 (8) ◽  
pp. 5220-5226 ◽  
Author(s):  
Prerana Jayakumar ◽  
Irina Berger ◽  
Frank Autschbach ◽  
Mark Weinstein ◽  
Benjamin Funke ◽  
...  

ABSTRACT Infection of macrophages has been implicated as a critical event in the transmission and persistence of human immunodeficiency virus type 1 (HIV-1). Here, we explore whether primary X4 HIV-1 isolates can productively infect tissue macrophages that have terminally differentiated in vivo. Using immunohistochemistry, HIV-1 RNA in situ hybridization, and confocal immunofluorescence microscopy, we demonstrate that macrophages residing in human tonsil blocks can be productively infected ex vivo by primary X4 HIV-1 isolates. This challenges the model in which macrophage tropism is a key determinant of the selective transmission of R5 HIV-1 strains. Infection of tissue macrophages by X4 HIV-1 may be highly relevant in vivo and contribute to key events in HIV-1 pathogenesis.


Author(s):  
Bernadien M. Nijmeijer ◽  
Marta Bermejo-Jambrina ◽  
Tanja M. Kaptein ◽  
Carla M. S. Ribeiro ◽  
Doris Wilflingseder ◽  
...  

AbstractSemen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.


1997 ◽  
Vol 51 (10) ◽  
pp. 430-438 ◽  
Author(s):  
S Arbault ◽  
M Edeas ◽  
S Legrand-Poels ◽  
N Sojic ◽  
C Amatore ◽  
...  
Keyword(s):  
Ex Vivo ◽  

2010 ◽  
Vol 84 (12) ◽  
pp. 5898-5908 ◽  
Author(s):  
Maximillian Rosario ◽  
Richard Hopkins ◽  
John Fulkerson ◽  
Nicola Borthwick ◽  
Máire F. Quigley ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.


2009 ◽  
Vol 83 (11) ◽  
pp. 5592-5605 ◽  
Author(s):  
Awet Abraha ◽  
Immaculate L. Nankya ◽  
Richard Gibson ◽  
Korey Demers ◽  
Denis M. Tebit ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2017 ◽  
Author(s):  
Yetao Wang ◽  
Kyle Gellatly ◽  
Sean McCauley ◽  
Pranitha Vangala ◽  
Kyusik Kim ◽  
...  

HIV-1-infected people who take medications that suppress viremia, preserve CD4+ T cells, and prevent AIDS, have chronic inflammation with increased cardiovascular mortality. To investigate the etiology of this inflammation, the effect of HIV-1 on innate lymphoid cells (ILCs) and NK cells was examined. Homeostatic ILCs in blood and intestine were depleted permanently. NK cells were skewed towards a memory subset. Cytokines that are elevated during HIV-1 infection reproduced both abnormalities ex vivo. Pseudotime analysis of single NK cell transcriptomes revealed a developmental trajectory towards a subset with expression profile, chromatin state, and biological function like memory T lymphocytes. Expression of TCF7, a WNT transcription factor, increased over the course of the trajectory. TCF7 disruption, or WNT inhibition, prevented memory NK cell induction by inflammatory cytokines. These results demonstrate that inflammatory cytokines associated with HIV-1 infection irreversibly disrupt homeostatic ILCs and cause developmental shift towards TCF7+ memory NK cells.


Sign in / Sign up

Export Citation Format

Share Document