scholarly journals Integrative modeling identifies genetic ancestry-associated molecular correlates in human cancer

2021 ◽  
Vol 2 (2) ◽  
pp. 100483
Author(s):  
A. Gordon Robertson ◽  
Christina Yau ◽  
Jian Carrot-Zhang ◽  
Jeffrey S. Damrauer ◽  
Theo A. Knijnenburg ◽  
...  
Informatics ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Hanen Mhamdi ◽  
Jérémie Bourdon ◽  
Abdelhalim Larhlimi ◽  
Mourad Elloumi

The integration of high-throughput data to build predictive computational models of cellular metabolism is a major challenge of systems biology. These models are needed to predict cellular responses to genetic and environmental perturbations. Typically, this response involves both metabolic regulations related to the kinetic properties of enzymes and a genetic regulation affecting their concentrations. Thus, the integration of the transcriptional regulatory information is required to improve the accuracy and predictive ability of metabolic models. Integrative modeling is of primary importance to guide the search for various applications such as discovering novel potential drug targets to develop efficient therapeutic strategies for various diseases. In this paper, we propose an integrative predictive model based on techniques combining semantic web, probabilistic modeling, and constraint-based modeling methods. We applied our approach to human cancer metabolism to predict in silico the growth response of specific cancer cells under approved drug effects. Our method has proven successful in predicting the biomass rates of human liver cancer cells under drug-induced transcriptional perturbations.


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
S Nam ◽  
R Buettner ◽  
X Liu ◽  
J Turkson ◽  
D Kim ◽  
...  

Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
IO Mondranondra ◽  
A Suedee ◽  
A Kijjoa ◽  
M Pinto ◽  
N Nazareth ◽  
...  

10.33540/153 ◽  
2020 ◽  
Author(s):  
◽  
Krijn Kristian Dijkstra
Keyword(s):  

2012 ◽  
Vol 17 (2) ◽  
pp. 123-143 ◽  
Author(s):  
Christina Schonherr ◽  
Bengt Hallberg ◽  
Ruth Palmer

Sign in / Sign up

Export Citation Format

Share Document