scholarly journals Pattern formation during early ovule development in Arabidopsis thaliana

2004 ◽  
Vol 273 (2) ◽  
pp. 321-334 ◽  
Author(s):  
Patrick Sieber ◽  
Jacqueline Gheyselinck ◽  
Rita Gross-Hardt ◽  
Thomas Laux ◽  
Ueli Grossniklaus ◽  
...  
Development ◽  
1997 ◽  
Vol 124 (7) ◽  
pp. 1367-1376 ◽  
Author(s):  
K. Schneitz ◽  
M. Hulskamp ◽  
S.D. Kopczak ◽  
R.E. Pruitt

Understanding organogenesis remains a major challenge in biology. Specification, initiation, pattern formation and cellular morphogenesis, have to be integrated to generate the final three-dimensional architecture of a multicellular organ. To tackle this problem we have chosen the ovules of the flowering plant Arabidopsis thaliana as a model system. In a first step towards a functional analysis of ovule development, we performed a large-scale genetic screen and isolated a number of sterile mutants with aberrant ovule development, We provide indirect genetic evidence for the existence of proximal-distal pattern formation in the Arabidopsis ovule primordium. The analysis of the mutants has identified genes that act at an intermediate regulatory level and control initiation of morphogenesis in response to proximal-distal patterning. A second group of genes functions at a subordinate control level and regulates general cellular processes of morphogenesis. A large group of male and female sterile mutants shows defects restricted to early or late gametogenesis. In addition, we propose that the mature ovule obtains its overall curved shape by at least three different processes that act in only one domain of the ovule.


Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2555-2563 ◽  
Author(s):  
K. Schneitz ◽  
S.C. Baker ◽  
C.S. Gasser ◽  
A. Redweik

Our understanding of the molecular mechanisms that regulate and integrate the temporal and spatial control of cell proliferation during organ ontogenesis, particularly of floral organs, continues to be primitive. The ovule, the progenitor of the seed, of Arabidopsis thaliana has been used to develop an effective model system for the analysis of plant organogenesis. A typical feature of a generalized ovule is the linear arrangement of at least three distinct elements, the funiculus, chalaza and nucellus, along a proximal-distal axis. This pattern is supposed to be established during the early proliferative phase of ovule development. We provide genetic evidence that the young ovule primordium indeed is a composite structure. Two genes, HUELLENLOS and AINTEGUMENTA have overlapping functions in the ovule and differentially control the formation of the central and proximal elements of the primordium. The results indicate that proximal-distal pattern formation in the Arabidopsis ovule takes place in a sequential fashion, starting from the distal end. Furthermore, we show that HUELLENLOS also regulates the initiation and/or maintenance of integument and embryo sac ontogenesis and interestingly prevents inappropriate cell death in the young ovule.


Development ◽  
2002 ◽  
Vol 129 (18) ◽  
pp. 4291-4300
Author(s):  
Sureshkumar Balasubramanian ◽  
Kay Schneitz

The ovules of Arabidopsis show polarity along the proximal-distal and the adaxial-abaxial axis. NOZZLE, a gene that encodes a novel protein and BELL1, encoding a homeodomain protein, play a vital role in pattern formation along the proximal-distal axis. INNER NO OUTER, which encodes a member of the YABBY family of transcription factors and SUPERMAN, encoding a zinc finger transcription factor, are essential for the establishment and maintenance of adaxial-abaxial polarity. To date, the co-ordination of patterning along these two axes is unclear. Here we show that NOZZLE plays a vital role in pattern formation along the adaxial-abaxial axis as well. We investigated the expression of INNER NO OUTER in various mutant backgrounds and have identified ABERRANT TESTA SHAPE and NOZZLE as spatial regulators of INNER NO OUTER expression. In addition, we show that NOZZLE and AINTEGUMENTA, which encodes an AP2 domain transcription factor, regulate the temporal expression of INNER NO OUTER and that BELL1 is essential for INNER NO OUTER expression. We further analysed the expression of BELL1 and AINTEGUMENTA in inner no outer mutants and show that the positive auto-regulatory control of INNER NO OUTER expression involves AINTEGUMENTA. Based on our results we propose a model for adaxial-abaxial pattern formation during ovule development. Our results indicate that NOZZLE plays a central role in patterning both the proximal-distal and the adaxial-abaxial axes. Furthermore, negatively regulating INO expression in a temporal manner, ensures that the adaxial-abaxial polarity is established after the specification of the chalaza, a proximal-distal axis pattern element. It therefore serves as a molecular link between these processes during ovule development in Arabidopsis thaliana.


Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4227-4238 ◽  
Author(s):  
S. Balasubramanian ◽  
K. Schneitz

With the characterisation of the NOZZLE gene we aim at a better understanding of the molecular and genetic mechanism underlying pattern formation and growth control during floral organogenesis. Our data indicate that NOZZLE links these processes during ovule development. In the ovule primordium NOZZLE plays a central role in the formation of the nucellus through antagonizing the activities of BELL, AINTEGUMENTA and INNER NO OUTER, all encoding putative transcription factors, in the prospective nucellar region. We provide evidence that NOZZLE and BELL are chalaza identity genes that share overlapping functions in establishing the prospective chalaza of the ovule. In addition, NOZZLE plays a role in controlling the cell number and by this means the length of the funiculus, again through antagonizing AINTEGUMENTA and INNER NO OUTER function. NOZZLE is also required for the development of the integuments. We show that during the initial phase of this process NOZZLE is transcriptionally regulated by AINTEGUMENTA and INNER NO OUTER. NOZZLE thus represents a downstream target of these two genes in the integument development pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ching-Yu Shen ◽  
You-Yi Chen ◽  
Ke-Wei Liu ◽  
Hsiang-Chia Lu ◽  
Song-Bin Chang ◽  
...  

AbstractThe ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.


1995 ◽  
Vol 82 (5) ◽  
pp. 585-595 ◽  
Author(s):  
Anxiu Kuang ◽  
Mary E. Musgrave ◽  
Sharon W. Matthews ◽  
Denyse B. Cummins ◽  
Shirley C. Tucker

2005 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tohru Ariizumi ◽  
Katsunori Hatakeyama ◽  
Kokichi Hinata ◽  
Shusei Sato ◽  
Tomohiko Kato ◽  
...  

1999 ◽  
Vol 96 (20) ◽  
pp. 11664-11669 ◽  
Author(s):  
U. Schiefthaler ◽  
S. Balasubramanian ◽  
P. Sieber ◽  
D. Chevalier ◽  
E. Wisman ◽  
...  

Genetics ◽  
1994 ◽  
Vol 137 (4) ◽  
pp. 1101-1110
Author(s):  
J D Lang ◽  
S Ray ◽  
A Ray

Abstract In Arabidopsis thaliana, a mutation in the SIN 1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin 1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin 1 with a second recessive gene, which we term mod 1. The recessive mod 1 allele in a homozygous sin 1 mutant plant reduces internode length and ovule integument size. The mutation sin 1, but not mod 1, has a demonstrable effect on ovule morphology when acting independently. In our crosses mod 1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicle lengths.


Sign in / Sign up

Export Citation Format

Share Document