scholarly journals The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border in Xenopus

2006 ◽  
Vol 295 (1) ◽  
pp. 382-383
Author(s):  
Chang-Soo Hong ◽  
Jean-Pierre Saint-Jeannet
2007 ◽  
Vol 18 (6) ◽  
pp. 2192-2202 ◽  
Author(s):  
Chang-Soo Hong ◽  
Jean-Pierre Saint-Jeannet

In Xenopus, the neural plate border gives rise to at least three cell populations: the neural crest, the preplacodal ectoderm, and the hatching gland. To understand the molecular mechanisms that regulate the formation of these lineages, we have analyzed the role of two transcription factors, Pax3 and Zic1, which are among the earliest genes activated in response to neural plate border-inducing signals. At the end of gastrulation, Pax3 and Zic1 are coexpressed in the neural crest forming region. In addition, Pax3 is expressed in progenitors of the hatching gland, and Zic1 is detected in the preplacodal ectoderm. Using gain of function and knockdown approaches in whole embryos and animal explants, we demonstrate that Pax3 and Zic1 are necessary and sufficient to promote hatching gland and preplacodal fates, respectively, whereas their combined activity is essential to specify the neural crest. Moreover, we show that by manipulating the levels of Pax3 and Zic1 it is possible to shift fates among these cells. These findings provide novel information on the mechanisms regulating cell fate decisions at the neural plate border.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115165 ◽  
Author(s):  
Zuming Zhang ◽  
Yu Shi ◽  
Shuhua Zhao ◽  
Jiejing Li ◽  
Chaocui Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Author(s):  
Gemma Sutton ◽  
Robert N. Kelsh ◽  
Steffen Scholpp

The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field’s potential future directions.


Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1711-1721 ◽  
Author(s):  
J.E. Schmidt ◽  
G. von Dassow ◽  
D. Kimelman

The formation of the dorsal-ventral axis in Xenopus laevis is elicited by a signaling cascade on the dorsal side of the embryo initiated by cortical rotation. These early developmental events impart an initial axial polarity to the embryo. By the time gastrulation occurs, the embryo has established opposing dorsal and ventral regulatory regions. Through a dynamic process, the embryo acquires a definitive pattern that reflects the distribution of future cell fates. Here we present a novel homeobox gene, Vox, whose expression reflects this dynamic process. Vox is first expressed throughout the embryo and subsequently eliminated from the notochord and neural plate. Ectopic expression of Vox demonstrates that the normal function of this gene may be to suppress dorsal genes such as Xnot and chordin, and induce ventral and paraxial genes such as Bmp-4 and MyoD. Ectopic expression of BMP-4 ventralizes embryos and positively regulates the expression of Vox, suggesting that these genes are components of a reciprocal regulatory network.


Development ◽  
2013 ◽  
Vol 140 (21) ◽  
pp. 4435-4444 ◽  
Author(s):  
S. Reichert ◽  
R. A. Randall ◽  
C. S. Hill

1997 ◽  
Vol 17 (5) ◽  
pp. 2716-2722 ◽  
Author(s):  
J Yochem ◽  
M Sundaram ◽  
M Han

Experiments with mammalian tissue culture cells have implicated the small GTPase Ras in the control of cellular proliferation. Evidence is presented here that this is not the case for a living animal, the nematode Caenorhabditis elegans: proliferation late in embryogenesis and throughout the four larval stages is not noticeably affected in animals lacking Ras in various parts of their cell lineages. Instead, genetic mosaic analysis of the let-60 gene suggests that Ras is required only, at least later in development (a maternal effect cannot be excluded), for establishment of a few temporally and spatially distinct cell fates. Only one of these, the duct cell fate, appears to be essential for viability.


2011 ◽  
Vol 240 (10) ◽  
pp. 2265-2271 ◽  
Author(s):  
Natalya Nikitina ◽  
Leslie Tong ◽  
Marianne E. Bronner

Sign in / Sign up

Export Citation Format

Share Document