scholarly journals BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border

Development ◽  
2012 ◽  
Vol 139 (22) ◽  
pp. 4220-4231 ◽  
Author(s):  
A. T. Garnett ◽  
T. A. Square ◽  
D. M. Medeiros
Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2425-2432 ◽  
Author(s):  
T. Hollemann ◽  
E. Bellefroid ◽  
T. Pieler

Genetic circuits responsible for the development of photoreceptive organs appear to be evolutionarily conserved. Here, the Xenopus homologue Xtll of the Drosophila gene tailless (tll), which we find to be expressed during early eye development, is characterized with respect to its relationship to vertebrate regulators of eye morphogenesis, such as Pax6 and Rx. Expression of all three genes is first detected in the area corresponding to the eye anlagen within the open neural plate in partially overlapping, but not identical, patterns. During the evagination of the optic vesicle, Xtll expression is most prominent in the optic stalk, as well as in the distal tip of the forming vesicle. In tadpole-stage embryos, Xtll gene transcription is most prominent in the ciliary margin of the optic cup. Inhibition of Xtll function in Xenopus embryos interferes specifically with the evagination of the eye vesicle and, in consequence, Xpax6 gene expression is severely reduced in such manipulated embryos. These findings suggest that Xtll serves an important regulatory function in the earliest phases of vertebrate eye development.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115165 ◽  
Author(s):  
Zuming Zhang ◽  
Yu Shi ◽  
Shuhua Zhao ◽  
Jiejing Li ◽  
Chaocui Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Author(s):  
Gemma Sutton ◽  
Robert N. Kelsh ◽  
Steffen Scholpp

The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field’s potential future directions.


Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2735-2746 ◽  
Author(s):  
D.H. Rowitch ◽  
Y. Echelard ◽  
P.S. Danielian ◽  
K. Gellner ◽  
S. Brenner ◽  
...  

The generation of anterior-posterior polarity in the vertebrate brain requires the establishment of regional domains of gene expression at early somite stages. Wnt-1 encodes a signal that is expressed in the developing midbrain and is essential for midbrain and anterior hindbrain development. Previous work identified a 5.5 kilobase region located downstream of the Wnt-1 coding sequence which is necessary and sufficient for Wnt-1 expression in vivo. Using a transgenic mouse reporter assay, we have now identified a 110 base pair regulatory sequence within the 5.5 kilobase enhancer, which is sufficient for expression of a lacZ reporter in the approximate Wnt-1 pattern at neural plate stages. Multimers of this element driving Wnt-1 expression can partially rescue the midbrain-hindbrain phenotype of Wnt-1(−/−) embryos. The possibility that this region represents an evolutionarily conserved regulatory module is suggested by the identification of a highly homologous region located downstream of the wnt-1 gene in the pufferfish (Fugu rubripes). These sequences are capable of appropriate temporal and spatial activation of a reporter gene in the embryonic mouse midbrain; although, later aspects of the Wnt-1 expression pattern are absent. Genetic evidence has implicated Pax transcription factors in the regulation of Wnt-1. Although Pax-2 binds to the 110 base pair murine regulatory element in vitro, the location of the binding sites could not be precisely established and mutation of two putative low affinity sites did not abolish activation of a Wnt-1 reporter transgene in vivo. Thus, it is unlikely that Pax proteins regulate Wnt-1 by direct interactions with this cis-acting regulatory region. Our analysis of the 110 base pair minimal regulatory element suggests that Wnt-1 regulation is complex, involving different regulatory interactions for activation and the later maintenance of transgene expression in the dorsal midbrain and ventral diencephalon, and at the midbrain-hindbrain junction.


Development ◽  
2013 ◽  
Vol 140 (21) ◽  
pp. 4435-4444 ◽  
Author(s):  
S. Reichert ◽  
R. A. Randall ◽  
C. S. Hill

2011 ◽  
Vol 240 (10) ◽  
pp. 2265-2271 ◽  
Author(s):  
Natalya Nikitina ◽  
Leslie Tong ◽  
Marianne E. Bronner

2020 ◽  
Vol 11 ◽  
Author(s):  
Ankita Thawani ◽  
Andrew K. Groves

The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.


Sign in / Sign up

Export Citation Format

Share Document