scholarly journals Cell adhesion and the cell biology of gastrulation in the cnidarian, Nematostella vectensis

2009 ◽  
Vol 331 (2) ◽  
pp. 452
Author(s):  
Craig R. Magie ◽  
Mark Q. Martindale
2013 ◽  
Vol 224 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Adam M. Reitzel ◽  
Yale J. Passamaneck ◽  
Sibel I. Karchner ◽  
Diana G. Franks ◽  
Mark Q. Martindale ◽  
...  

Author(s):  
Kevin V. Christ ◽  
Kevin T. Turner

Cell adhesion plays a fundamental role in numerous physiological and pathological processes, and measurements of the adhesion strength are important in fields ranging from basic cell biology research to the development of implantable biomaterials. Our group and others have recently demonstrated that microfluidic devices offer advantages for characterizing the adhesion of cells to protein-coated surfaces [1,2]. Microfluidic devices offer many advantages over conventional assays, including the ability to apply high shear stresses in the laminar regime and the opportunity to directly observe cell behavior during testing. However, a key disadvantage is that such assays require cells to be cultured inside closed microchannels. Assays based on closed channels restrict the types of surfaces that can be examined and are not compatible with many standard techniques in cell biology research. Furthermore, while techniques for cell culture in microchannels have become common, maintaining the viability of certain types of cells in channels remains a challenge.


Cell Reports ◽  
2020 ◽  
Vol 30 (13) ◽  
pp. 4473-4489.e5 ◽  
Author(s):  
Océane Tournière ◽  
David Dolan ◽  
Gemma Sian Richards ◽  
Kartik Sunagar ◽  
Yaara Y. Columbus-Shenkar ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1194-1194
Author(s):  
Fang Tan ◽  
Robert Thomas ◽  
Flaubert Mbeunkui ◽  
Solomon F. Ofori-Acquah

Abstract Regulation of hematopoietic progenitor cell lineage-commitment, proliferation and differentiation by cell-cell adhesion mechanisms is poorly understood. Activated leukocyte cell adhesion molecule (ALCAM) is a member of the immunoglobulin super family. It is expressed by human hematopoietic stem cells, bone marrow stromal cells, endothelial cells and osteoblasts. Monoclonal anti-ALCAM antibodies inhibit myeloid but not erythroid colony formation, which suggest a lineage-specific role for ALCAM in hematopoiesis. To explore this hypothesis, ALCAM mRNA and protein expression was quantified in human hematopoietic cell lines of myeloid, lymphoid, erythroid, and megakaryocytic lineages by real-time quantitative PCR and western blot analyses. No ALCAM transcripts were detected in K562 and MEG-01 cells, the level of ALCAM mRNA was 2-fold more abundant in HL-60 and THP-1 cells than in U937 and Jurkat cells. This expression pattern was confirmed at the protein level as none of the megakaryocyte-erythroid progenitor cell lines (K562, MEG-01 and HEL) expressed ALCAM. On the contrary, ALCAM was abundantly expressed in THP-1 and HL-60 cells and moderately in U937 and Jurkat cells. GATA-1 was abundantly expressed in megakaryocyte-erythroid progenitor cell lines but not in any of the myeloid cell lines. Thus, there is an inverse relationship between expression of ALCAM and GATA-1 in hematopoietic cells. To test the hypothesis that GATA-1 is involved in silencing ALCAM gene expression, multiple ALCAM-promoter luciferase constructs were studied. A negative regulatory region was identified in the ALCAM promoter containing an inverted GATA-1 cis element at −850 upstream of the translational start site. GATA-1 occupied this canonical element in vivo as determined by chromatin immunoprecipitation experiments. A two-base pair mutation of the −850 GATA-1 cis element increased ALCAM promoter activity 3-fold in K562 and MEG-01 cells, providing direct evidence of GATA-1’s negative regulatory role in ALCAM promoter activity. To test the hypothesis that ALCAM silencing is essential for megakaryocyte-erythroid progenitor cell biology, stable lines of K562 cells were established forcibly expressing ALCAM-GFP or a control GFP. Live cell imaging demonstrated recruitment of ALCAM to sites of cell-cell adhesion in ALCAM-GFP-K562 cells, whereas GFP remained distributed in the cell cytosol in control cells. ALCAM-GFP-K562 cells formed markedly more clusters consisting of significantly more cells than control GFP-K562 cells. Finally, the number of ALCAM-GFP-K562 cells at log-phase growth was significantly higher than GFP-K562 cells over the same time period. Our findings demonstrate for the first time lineage-specific silencing of the cell adhesion molecule ALCAM in megakaryocyte-erythroid progenitor cells, mediated at least in part by GATA-1. That ectopic expression of ALCAM increased proliferation of K562 cells suggests that GATA-1-mediated silencing of ALCAM is essential in slowing down expansion of megakaryocyte-erythroid progenitor cells. Indeed, preliminary studies show an excessive number of erythroid and megakaryocytic cells in the adult spleen of ALCAM-null mice. This model is being used in ongoing studies to confirm our findings in vivo.


2017 ◽  
Vol 114 (28) ◽  
pp. E5608-E5615 ◽  
Author(s):  
Naveen Wijesena ◽  
David K. Simmons ◽  
Mark Q. Martindale

Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis. Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral–aboral axis in Nematostella. We also show functionally that the conserved “kernel” of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.


2011 ◽  
Vol 356 (1) ◽  
pp. 107 ◽  
Author(s):  
Naveen M. Wijesena ◽  
Shalika Kumburegama ◽  
Ronghui Xu ◽  
Athula Wikramanayake

Sign in / Sign up

Export Citation Format

Share Document