scholarly journals The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber

2020 ◽  
Vol 461 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Josephine Thestrup ◽  
Marina Tipold ◽  
Alexandra Kindred ◽  
Kara Stark ◽  
Travis Curry ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Josephine Thestrup ◽  
Marina Tipold ◽  
Alexandra Kindred ◽  
Kara Stark ◽  
Travis Curry ◽  
...  

AbstractIntercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and expansion of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold expansion that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and expansion. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and expansion throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once the ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain their stability. Our data suggest that the nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.


2018 ◽  
Vol 440 (2) ◽  
pp. 99-112 ◽  
Author(s):  
Ashley Kline ◽  
Travis Curry ◽  
Lindsay Lewellyn
Keyword(s):  

1985 ◽  
Vol 157 (2) ◽  
pp. 355-363 ◽  
Author(s):  
R.M. Warn ◽  
H.O. Gutzeit ◽  
L. Smith ◽  
A. Warn
Keyword(s):  

2020 ◽  
Author(s):  
Wen Lu ◽  
Margot Lakonishok ◽  
Vladimir I. Gelfand
Keyword(s):  

1976 ◽  
Vol 22 (1) ◽  
pp. 99-113
Author(s):  
M. Meats ◽  
J.B. Tucker

During the first three cleavage divisions of the egg nuclei a precise sequence of spindle orientation and elongation parallel to the longitudinal axis of the egg is apparently involved in positioning one nucleus among the polar granules at the posterior pole of the egg. The size of this nucleus, and the position at which the egg cleaves when pole cell formation occurs, appear to constitute part of the mechanism which ensures that only one nucleus is included in the first pole cell. Blastoderm formation occurs without a well-defined migration of nuclei to the egg surface. Nuclei are so large in relation to the size of the egg that uniform spacing and distribution of nuclei ensures that a large proportion are situated near the egg surface. Those nuclei which are near the egg surface divide synchronously to form a layer of blastoderm nuclei, while membranous cleavage furrows invaginate from the egg surface between them. Nuclei in the central region of the egg chamber condense to form yolk nuclei before blastoderm nuclei have been separated from the rest of the egg by the completion of the cleavage membranes. Polar granules provide the only evidence of fine-structural differences in different regions of the egg chamber cytoplasm. They are found near the posterior pole of the egg from an early stage of oogenesis. They undergo a specific sequence of structural changes and increase in size as the egg grows. No microtubular or microfibrillar arrays have been found in the egg chamber which might form a cytoskeletal basis for spindle orientation or for the spatial differences which develop during differentiation of the uncleaved egg cytoplasm.


Development ◽  
1998 ◽  
Vol 125 (6) ◽  
pp. 1075-1082 ◽  
Author(s):  
K. Foley ◽  
L. Cooley

We have determined that nurse cells are cleared from the Drosophila egg chamber by apoptosis. DNA fragmentation begins in nurse cells at stage 12, following the completion of cytoplasm transfer from the nurse cells to the oocyte. During stage 13, nurse cells increasingly contain highly fragmented DNA and disappear from the egg chamber concomitantly with the formation of apoptotic vesicles containing highly fragmented nuclear material. In dumpless mutant egg chambers that fail to complete cytoplasm transport from the nurse cells, DNA fragmentation is markedly delayed and begins during stage 13, when the majority of cytoplasm is lost from the nurse cells. These data suggest the presence of cytoplasmic factors in nurse cells that inhibit the initiation of DNA fragmentation. In addition, we have examined the ovarian expression patterns of regulatory genes implicated in Drosophila apoptosis. The positive regulators, reaper (rpr), head involution defective (hid) and grim, as well as the negative regulators, DIAP1 and DIAP2, are transcribed during oogenesis. However, germline clones homozygous for the deficiency Df(3)H99, which deletes rpr, hid and grim, undergo oogenesis in a manner morphologically indistinguishable from wild type, indicating that genes within this region are not necessary for apoptosis in nurse cells.


1995 ◽  
Vol 128 (1) ◽  
pp. 51-60 ◽  
Author(s):  
M Way ◽  
M Sanders ◽  
C Garcia ◽  
J Sakai ◽  
P Matsudaira

The acrosomal process of Limulus sperm is an 80-microns long finger of membrane supported by a crystalline bundle of actin filaments. The filaments in this bundle are crosslinked by a 102-kD protein, scruin present in a 1:1 molar ratio with actin. Recent image reconstruction of scruin decorated actin filaments at 13-A resolution shows that scruin is organized into two equally sized domains bound to separate actin subunits in the same filament. We have cloned and sequenced the gene for scruin from a Limulus testes cDNA library. The deduced amino acid sequence of scruin reflects the domain organization of scruin: it consists of a tandem pair of homologous domains joined by a linker region. The domain organization of scruin is confirmed by limited proteolysis of the purified acrosomal process. Three different proteases cleave the native protein in a 5-kD Protease-sensitive region in the middle of the molecule to generate an NH2-terminal 47-kD and a COOH-terminal 56-kD protease-resistant domains. Although the protein sequence of scruin has no homology to any known actin-binding protein, it has similarities to several proteins, including four open reading frames of unknown function in poxviruses, as well as kelch, a Drosophila protein localized to actin-rich ring canals. All proteins that show homologies to scruin are characterized by the presence of an approximately 50-amino acid residue motif that is repeated between two and seven times. Crystallographic studies reveal this motif represents a four beta-stranded fold that is characteristic of the "superbarrel" structural fold found in the sialidase family of proteins. These results suggest that the two domains of scruin seen in EM reconstructions are superbarrel folds, and they present the possibility that other members of this family may also bind actin.


2000 ◽  
Vol 218 (2) ◽  
pp. 314-325 ◽  
Author(s):  
Douglas M Ruden ◽  
Vincent Sollars ◽  
Xiaoyan Wang ◽  
Daisuke Mori ◽  
Marina Alterman ◽  
...  

Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 947-956 ◽  
Author(s):  
H. Lin ◽  
L. Yue ◽  
A.C. Spradling

Oogenesis in Drosophila takes place within germline cysts that support polarized transport through ring canals interconnecting their 15 nurse cells and single oocyte. Developing cystocytes are spanned by a large cytoplasmic structure known as the fusome that has been postulated to help form ring canals and determine the pattern of nurse cell-oocyte interconnections. We identified the adducin-like hts product and alpha-spectrin as molecular components of fusomes, discovered a related structure in germline stem cells and documented regular associations between fusomes and cystocyte centrosomes. hts mutations completely eliminated fusomes, causing abnormal cysts containing a reduced number of cells to form. Our results imply that Drosophila fusomes are required for ovarian cyst formation and suggest that membrane skeletal proteins regulate cystocyte divisions.


Sign in / Sign up

Export Citation Format

Share Document