Tbx15/18/22 shares a binding site with Tbx6-r.b to maintain expression of a muscle structural gene in ascidian late embryos

Author(s):  
Deli Yu ◽  
Yuri Iwamura ◽  
Yutaka Satou ◽  
Izumi Oda-Ishii
Keyword(s):  
1998 ◽  
Vol 180 (9) ◽  
pp. 2367-2372 ◽  
Author(s):  
Sudha A. Chugani ◽  
Matthew R. Parsek ◽  
A. M. Chakrabarty

ABSTRACT The catBCA operon of Pseudomonas putidaencodes enzymes involved in the catabolism of benzoate. Transcription of this operon requires the LysR-type transcriptional regulator CatR and an inducer molecule, cis,cis-muconate. Previous gel shift assays and DNase I footprinting have demonstrated that CatR occupies two adjacent sites proximal to thecatBCA promoter in the presence of the inducer. We report the presence of an additional binding site for CatR downstream of thecatBCA promoter within the catB structural gene. This site, called the internal binding site (IBS), extends from +162 to +193 with respect to the catB transcriptional start site and lies within the catB open reading frame. Gel shift analysis and DNase I footprinting determined that CatR binds to this site with low affinity. CatR binds cooperatively with higher affinity to the IBS in the presence of the two upstream binding sites. Parallel in vivo and in vitro studies were conducted to determine the role of the internal binding site. We measured β-galactosidase activity ofcatB-lacZ transcriptional fusions in vivo. Our results suggest a probable cis-acting repressor function for the internal binding site. Site-directed mutagenesis of the IBS verified this finding. The location of the IBS within the catBstructural gene, the cooperativity observed in footprinting studies, and phasing studies suggest that the IBS likely participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA.


Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1363-1372
Author(s):  
Alexander Kraft ◽  
Christina Lutz ◽  
Arno Lingenhel ◽  
Peter Gröbner ◽  
Wolfgang Piendl

Abstract The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protein MvaL1 binds preferentially to its binding site on the 23S rRNA, and, when in excess, binds to the regulatory target site on its mRNA and thus inhibits translation of all three cistrons of the operon. The regulatory binding site on the mRNA, a structural mimic of the respective binding site on the 23S rRNA, is located within the structural gene about 30 nucleotides downstream of the ATG start codon. MvaL1 blocks a step before or at the formation of the first peptide bond of MvaL1. Here we demonstrate that a similar regulatory mechanism exists in the thermophilic M. thermolithotrophicus and M. jannaschii. The L1 gene is cotranscribed together with the L10 and L11 gene, in all genera of the Euryarchaeota branch of the Archaea studied so far. A potential regulatory L1 binding site located within the structural gene, as in Methanococcus, was found in Methanobacterium thermoautotrophicum and in Pyrococcus horikoshii. In contrast, in Archaeoglobus fulgidus a typical L1 binding site is located in the untranslated leader of the L1 gene as described for the halophilic Archaea. In Sulfolobus, a member of the Crenarchaeota, the L1 gene is part of a long transcript (encoding SecE, NusG, L11, L1, L10, L12). A previously suggested regulatory L1 target site located within the L11 structural gene could not be confirmed as an L1 binding site.


1995 ◽  
Vol 95 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Heping Cao ◽  
Thomas D. Sullivan ◽  
Charles D. Boyer ◽  
Jack C. Shannon
Keyword(s):  

1996 ◽  
Vol 76 (01) ◽  
pp. 005-008 ◽  
Author(s):  
Jean Claude Lormeau ◽  
Jean Pascal Herault ◽  
Jean Marc Herbert

SummaryWe examined the effect of the synthetic pentasaccharide representing the minimal binding site of heparin to antithrombin on the antithrombin-mediated inactivation of factor Vila bound to tissue factor. This effect was compared to the effect of unfractionated heparin. Using purified recombinant human coagulation factors and either a clotting or an amidolytic assay for the determination of the residual activity of factor Vila, we showed that the pentasaccharide was an efficient antithrombin-dependent inhibitor of the coagulant activity of tissue factor-factor Vila complex. In our experimental conditions, assuming a mean MW of 14,000 for heparin, the molar pseudo-first order rate constants for ATIII-mediated FVIIa inhibition by ATIII-binding heparin and by the synthetic pentasaccharide were found to be similar with respective values of 104,000 ± 10,500 min-1 and 112,000 ± 12,000 min-1 (mean ± s.e.m., n = 3)


1995 ◽  
Vol 73 (05) ◽  
pp. 829-834 ◽  
Author(s):  
Jaya Padmanabhan ◽  
David C Sane

SummaryThe PAI-1 binding site for VN was studied using two independent methods. PAI-1 was cleaved by Staph V8 protease, producing 8 fragments, only 2 of which bound to [125I]-VN. These fragments were predicted to overlap between residues 91-130. Since PAI-2 has structural homology to PAI-1, but does not bind to vitronectin, chimeras of PAI-1 and PAI-2 were constructed. Four chimeras, containing PAI-1 residues 1-70,1-105,1-114, and 1-167 were constructed and expressed in vitro. PAI-1, PAI-2, and all of the chimeras retained inhibitory activity for t-PA, but only the chimera containing PAI-1 residues 1-167 formed a complex with VN. Together, these results predict that the VN binding site of PAI-1 is between residues 115-130.


1997 ◽  
Vol 77 (01) ◽  
pp. 137-142 ◽  
Author(s):  
Kiyoshi Tachikawa ◽  
Keiji Hasurni ◽  
Akira Endo

SummaryPlasminogen binds to endothelial and blood cells as well as to fibrin, where the zymogen is efficiently activated and protected from inhibition by α2-antiplasmin. In the present study we have found that complestatin, a peptide-like metabolite of a streptomyces, enhances binding of plasminogen to cells and fibrin. Complestatin, at concentrations ranging from 1 to 5 μM, doubled 125I-plasminogen binding to U937 cells both in the absence and presence of lipoprotein(a), a putative physiological competitor of plasminogen. The binding of 125I-plasminogen in the presence of complestatin was abolished by e-aminocaproic acid, suggesting that the lysine binding site(s) of the plasminogen molecule are involved in the binding. Equilibrium binding analyses indicated that complestatin increased the maximum binding of 125I-plasminogen to U937 cells without affecting the binding affinity. Complestatin was also effective in increasing 125I-plasminogen binding to fibrin, causing 2-fold elevation of the binding at ~1 μM. Along with the potentiation of plasminogen binding, complestatin enhanced plasmin formation, and thereby increased fibrinolysis. These results would provide a biochemical basis for a pharmacological stimulation of endogenous fibrinolysis through a promotion of plasminogen binding to cells and fibrin.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
AE Schulze Schleithoff ◽  
A Kairat ◽  
AF Koch ◽  
W Stremmel ◽  
PH Krammer ◽  
...  

1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S420-S438 ◽  
Author(s):  
David L. Williams ◽  
Jack Gorski

ABSTRACT A number of studies have been carried out to examine the distribution of the oestradiol-binding protein complex between cytosol and nuclear fractions as a function of total binding site saturation. The results of these studies suggest that each binding protein has one binding site for the hormone. In addition, these studies suggest that the interaction of the oestradiol-binding protein complex with the nucleus involves a large number of low affinity association sites.


1983 ◽  
Vol 102 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Tjerk W. A de Bruin ◽  
Daan van der Heide ◽  
Maria C. Krol

Abstract. An immunoprecipitation assay was developed to determine the presence of antibodies against human TSH1 receptors. With this assay we were able to demonstrate that in comparison with sera from normal controls, 24 out of 30 (80%) sera from patients with untreated Graves' disease could immunoprecipitate more [125I]TSH-TSH receptor complexes. In 9 assays, an average of 14.1 ± 3.7% (sd) of the [125I]TSH-TSH receptor complexes was immunoprecipitated by the 30 Graves' sera vs 9.8 ± 3.0% by the normal pool serum (n = 23) (P < 0.001) and 7.7 ± 2.8% by the 22 normal sera (P < 0.001). One serum of the 24 positive Graves' sera was studied in detail. The results suggest that this serum contained an anti-TSH receptor auto-antibody directed towards a different determinant on the TSH receptor than the TSH binding site.


Sign in / Sign up

Export Citation Format

Share Document