Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women

2012 ◽  
Vol 2012 ◽  
pp. 216-218
Author(s):  
B.L. Clarke
Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 938
Author(s):  
Jian Geng ◽  
Ling Wang ◽  
Qing Li ◽  
Pengju Huang ◽  
Yandong Liu ◽  
...  

Little is known about the effect of lumbar intervertebral disc herniation (LDH) on lumbar bone mineral density (BMD), and few previous studies have used quantitative computed tomography (QCT) to assess whether the staging of LDH correlates with lumbar vertebral trabecular volumetric bone mineral density (Trab.vBMD). To explore the relationship between lumbar Trab.vBMD and LDH, seven hundred and fifty-four healthy participants aged 20–60 years were enrolled in the study from an ongoing study on the degeneration of the spine and knee between June 2014 and 2017. QCT was used to measure L2–4 Trab.vBMD and lumbar spine magnetic resonance images (MRI) were performed to assess the incidence of disc herniation. After 9 exclusions, a total of 322 men and 423 women remained. The men and women were divided into younger (age 20–39 years) and older (age 40–60 years) groups and further into those without LDH, with a single LDH segment, and with ≥2 segments. Covariance analysis was used to adjust for the effects of age, BMI, waistline, and hipline on the relationship between Trab.vBMD and LDH. Forty-one younger men (25.0%) and 59 older men (37.3%) had at least one LDH segment. Amongst the women, the numbers were 46 (22.5%) and 80 (36.4%), respectively. Although there were differences in the characteristics data between men and women, the difference in Trab.vBMD between those without LDH and those with single and ≥2 segments was not statistically significant (p > 0.05). These results remained not statistically significant after further adjusting for covariates (p > 0.05). No associations between lumbar disc herniation and vertebral trabecular volumetric bone mineral density were observed in either men or women.


2012 ◽  
Vol 27 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Kristy M Nicks ◽  
Shreyasee Amin ◽  
Elizabeth J Atkinson ◽  
B Lawrence Riggs ◽  
L Joseph Melton ◽  
...  

PEDIATRICS ◽  
1993 ◽  
Vol 91 (6) ◽  
pp. 1127-1130
Author(s):  
Antero Kotaniemi ◽  
Anneli Savolainen ◽  
Hannu Kautiainen ◽  
Heikki Kröger

Study objective. To investigate the degree and determinants of osteopenia in juvenile chronic polyarthritis. Design. Retrospective case-control study of central bone mineral density. Setting. Rheumatism Foundation Hospital and Kuopio University Hospital, Finland. Subjects. A sample of 43 girls aged 7 to 19 with juvenile chronic polyarthritis treated with systemic glucocorticoids and a control sample of 44 healthy girls matched for age. Main outcome measures. Bone mineral density and bone size (width) measured by dual-energy x-ray absorptiometry and bone volumetric density calculated as an approximation of true bone density at both the lumbar spine and femoral neck. Results. The girls with juvenile chronic arthritis had reduced bone mineral density, bone size, and bone volumetric density at both the lumbar spine and femoral neck (statistically significant findings, P = .022 for the bone size of the femoral neck and P < .001 for the other parameters). At the spine, the mean bone mineral density was 80%, the mean bone size 89%, and the mean bone volumetric density 89% of the values in the control group. At the femoral neck, the values were 78%, 93%, and 83%, respectively. The groups were matched for age, but the girls with arthritis were smaller and lighter. In the juvenile arthritis group, the femoral bone mineral density and bone volumetric density and the spinal bone width correlated negatively with the mean glucocorticoid dose. Conclusion. Axial bone mineral density is clearly reduced in severe juvenile polyarthritis and is mediated by both decreased bone volumetric density and diminished growth.


2012 ◽  
Vol 37 (5) ◽  
pp. 947-954 ◽  
Author(s):  
Sarah M. Camhi ◽  
Peter T. Katzmarzyk

Physical activity (PA), total body fat (TBF), and lean body mass (LBM) are associated with bone mineral density (BMD). However, the independent influence of PA on BMD, while controlling for body composition is not understood as well and is the purpose of the current study. Whole-body BMD (g·cm–2), femoral neck BMD (g·cm–2), TBF (kg), and LBM (kg) were measured with dual-energy X-ray absorptiometry. PA levels (total, work, sport, non-sport) were estimated using the Baecke questionnaire. General linear models determined the independent effects of PA on BMD (whole-body and femoral neck), with adjustment for age, sex, ethnicity, smoking, menopausal status (as appropriate), LBM, and TBF. These associations were also examined by sex and age group (20–34, 35–49, and 50–64 years). The sample included 802 adults (65% women; 13% African American) from the Pennington Center Longitudinal Study that were 20 to 64 years of age (mean ± SD: 46.9 ± 11.0 years). Higher sports scores were associated with higher femoral neck BMD in the total group, men and women, and in 20- to 34-year-olds and 35- to 49-year-olds, but not significant in those 50–64 years of age. Similar significant associations were found for sports score with total body BMD; however, this relationship was not significant for women or for those 50–64 years of age. Total PA had inconsistent relationships with both femoral neck BMD and total body BMD. Higher levels of sport-related PA are associated with higher femoral neck BMD; however, these relationships vary by PA domain and site of BMD measurement.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Bulat I. Yalaev ◽  
Anton V. Tyurin ◽  
Regina Y. Mirgalieva ◽  
Elza K. Khusnutdinova ◽  
Rita I. Khusainova

In recent genome-wide association studies (GWAS), several polymorphic loci of the osteoprotegerin (OPG) gene were significantly associated with bone mineral density (BMD) and fractures in men over 50 years of age and postmenopausal women. The objective of our study was to search for associations of rs3102735, rs3134069, rs2073617, rs2073618, rs3102734 and rs7844539 of the OPG gene with the risk of osteoporotic fractures and the level of BMD in individual and comorbid conditions in men and women from the Volga-Ural region of Russia. Material and Methods — 828 women and 496 men of various ethnic groups (Russians, Turks) were examined using two-energy x-ray absorptiometry (DEXA) in the femoral neck and lumbar spine. 1324 deoxyribonucleic acid (DNA) samples were genotyped using a fluorescent endpoint genotyping system, after that we searched for associations of these polymorphic loci with fractures and low BMD levels of various localizations. As a result, there was a significant association of rs3134069 and rs3102734 with fractures in general and in the peripheral parts of the skeleton, as well as rs7844539 and rs3102734 in women and rs2073618 in men with low BMD. Another significant association of rs3102734 and rs2073618 with low bone mineral density in the femoral neck was found in both genders. Conclusion — Polymorphic variants rs3134069, rs3102734, rs7844539 and rs3102734 are potential markers of the risk of osteoporetic fractures and the formation of low BMD in men and women from the Volga-Ural region of Russia.


1995 ◽  
Vol 08 (03) ◽  
pp. 153-158 ◽  
Author(s):  
D. M. Tillson ◽  
R. M. McLaughlin ◽  
Ph. W. Toll ◽  
D. C. Richardson ◽  
J. K. Roush

SummaryThin slices of the proximal femora of twelve immature dogs were examined with dual energy x-ray absorptiometry, after surgical creation and repair of proximal femoral physeal fractures. A protocol for the subtraction of microvascular barium sulphate was used to eliminate interference from the barium with the determination of bone mineral content (BMC), bone mineral density (BMD) and volumetric bone mineral density (VBMD). The results showed there was a significant decrease in the BMC (four and eight weeks) and BMD (eight weeks) for the entire proximal femora of the operated side when compared to the non-operated side. Significant decreases were also seen for the BMC of the physeal region at week eight and the VBMD of the metaphyseal area in the two week femora. The findings with DEXA support the clinical findings of femoral neck thinning in proximal femoral physeal fractures that are surgically repaired. The DEXA findings suggest that the quality of the bone of the femoral neck is less as shown by the decreased BMC, BMD and VBMD. Postoperative complications may occur at a higher frequency when such quality changes occur.Dog proximal femora were examined with DEXA after surgical creation and repair of proximal femoral physeal fractures. DEXA findings support clinical findings of femoral neck thining after fracture repair.


Sign in / Sign up

Export Citation Format

Share Document