Tire dimensionless numbers for analysis of tire characteristics and intelligent tire signals

2021 ◽  
Vol 161 ◽  
pp. 107927
Author(s):  
Dasol Jeong ◽  
Seibum B. Choi ◽  
Jonghyup Lee ◽  
Mintae Kim ◽  
Hojong Lee
Author(s):  
Caio Araujo ◽  
Tiago Ferreira Souza ◽  
Maurício Figueiredo ◽  
valdir estevam ◽  
Ana Maria Frattini Fileti

2021 ◽  
Vol 11 (9) ◽  
pp. 4251
Author(s):  
Jinsong Zhang ◽  
Shuai Zhang ◽  
Jianhua Zhang ◽  
Zhiliang Wang

In the digital microfluidic experiments, the droplet characteristics and flow patterns are generally identified and predicted by the empirical methods, which are difficult to process a large amount of data mining. In addition, due to the existence of inevitable human invention, the inconsistent judgment standards make the comparison between different experiments cumbersome and almost impossible. In this paper, we tried to use machine learning to build algorithms that could automatically identify, judge, and predict flow patterns and droplet characteristics, so that the empirical judgment was transferred to be an intelligent process. The difference on the usual machine learning algorithms, a generalized variable system was introduced to describe the different geometry configurations of the digital microfluidics. Specifically, Buckingham’s theorem had been adopted to obtain multiple groups of dimensionless numbers as the input variables of machine learning algorithms. Through the verification of the algorithms, the SVM and BPNN algorithms had classified and predicted the different flow patterns and droplet characteristics (the length and frequency) successfully. By comparing with the primitive parameters system, the dimensionless numbers system was superior in the predictive capability. The traditional dimensionless numbers selected for the machine learning algorithms should have physical meanings strongly rather than mathematical meanings. The machine learning algorithms applying the dimensionless numbers had declined the dimensionality of the system and the amount of computation and not lose the information of primitive parameters.


Fuel ◽  
2021 ◽  
Vol 284 ◽  
pp. 118972
Author(s):  
Dong Liu ◽  
Junshi Tang ◽  
Ruonan Zheng ◽  
Qiang Song

Author(s):  
R. Gaudron ◽  
D. Yang ◽  
A. S. Morgans

Abstract Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh’s criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor’s boundaries and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.


2021 ◽  
Vol 20 (3) ◽  
pp. 37
Author(s):  
S. A. Verdério Júnior ◽  
V. L. Scalon ◽  
S. R. Oliveira ◽  
P. C. Mioralli ◽  
E. Avellone

Natural convection heat transfer is present in the most diverse applications of Thermal Engineering, such as in electronic equipment, transmission lines, cooling coils, biological systems, etc. The correct physical-mathematical modeling of this phenomenon is crucial in the applied understanding of its fundamentals and the design of thermal systems and related technologies. Dimensionless analyses can be applied in the study of flows to reduce geometric and experimental dependence and facilitate the modeling process and understanding of the main influence physical parameters; besides being used in creating models and prototypes. This work presents a methodology for dimensionless physical-mathematical modeling of natural convection turbulent flows over isothermal plates, located in an “infinite” open environment. A consolidated dimensionless physical-mathematical model was defined for the studied problem situation. The physical influence of the dimensionless numbers of Grashof, Prandtl, and Turbulent Prandtl was demonstrated. The use of the Theory of Dimensional Analysis and Similarity and its application as a tool and numerical device in the process of building and simplifying CFD simulations were discussed.


2016 ◽  
Vol 238 ◽  
pp. 57-64 ◽  
Author(s):  
Roney L. Thompson ◽  
Edson J. Soares

Sign in / Sign up

Export Citation Format

Share Document