Dynamic analysis of the non-viscously damped structure using the superposition of first-order IIR filters

2022 ◽  
Vol 167 ◽  
pp. 108596
Author(s):  
Xianting Du ◽  
Weiwei Guo ◽  
He Xia ◽  
Hong Qiao
1989 ◽  
Vol 111 (4) ◽  
pp. 626-629
Author(s):  
W. Ying ◽  
R. L. Huston

In this paper the dynamic behavior of beam-like mechanism systems is investigated. The elastic beam is modeled by finite rigid segments connected by joint springs and dampers. The equations of motion are derived using Kane’s equations. The nonlinear terms are linearized by first order perturbation about a system balanced configuration state leading to geometric stiffness matrices. A simple numerical example of a rotating cantilever beam is presented.


Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


2020 ◽  
Vol 162 (A3) ◽  
Author(s):  
S Pal ◽  
S Haldar ◽  
K Kalita

An isoparametric plate bending element with nine nodes is used in this paper for dynamic analysis of isotropic cut-out plate having concentrated and uniformly distributed mass on the plate. The Mindlin’s first-order shear deformation theory (FSDT) is used in the present finite element formulation. Two proportionate mass lumping schemes are used. The effect of rotary inertia is included in one of the mass lumping schemes in the present element formulation. Dynamic analysis of rectangular isotropic plates with cut-out having different side ratio, thickness ratio and boundary condition is analysed using a finite element method. The present results are compared with the published results. Some new results on isotropic plates with cut-out having different side ratio, ratio of side-to-thickness of the plate, different position and size of cut-out in plates subjected to transversely concentrated and distributed mass are presented.


Author(s):  
S Pal ◽  
S Haldar ◽  
K Kalita

An isoparametric plate bending element with nine nodes is used in this paper for dynamic analysis of isotropic cut-out plate having concentrated and uniformly distributed mass on the plate. The Mindlin’s first-order shear deformation theory (FSDT) is used in the present finite element formulation. Two proportionate mass lumping schemes are used. The effect of rotary inertia is included in one of the mass lumping schemes in the present element formulation. Dynamic analysis of rectangular isotropic plates with cut-out having different side ratio, thickness ratio and boundary condition is analysed using a finite element method. The present results are compared with the published results. Some new results on isotropic plates with cut-out having different side ratio, ratio of side-to-thickness of the plate, different position and size of cut-out in plates subjected to transversely concentrated and distributed mass are presented.


2018 ◽  
Vol 931 ◽  
pp. 422-427
Author(s):  
Yevgeniy M. Kudryavtsev

A new approach of mechanical driving-gear dynamic analysis, which includes several modelling stages is observed in the article. On the first stage driving-gear is represented in the form of consistently connected rotation bodies. The driving-gear is represented in a graphic kind by means of the marked graph. On the second stage mathematical model of driving-gear performance with using of mnemonic rule is created. Mathematical model of mechanical driving-gear is a system of second-order regular differential equations (RDEs). The system of second-order regular differential equations is transformed into a system of first-order regular differential equations. There is a standard method for writing a higher-order RDE as a system of the first-order RDEs. On the third stage computer model of driving-gear performance using system Mathcad is created and initial data is defined. On the fourth stage the mechanical driving-gear modelling is performed and calculation data in numerical and graphical forms is obtained. This approach provides high level of the driving-gear dynamic analysis, including the received results presentation, which is especially important on the earliest stages of mechanical driving-gear design. The proposed procedure of mechanical driving-gear dynamic analysis using Mathcad software significantly decreases time and working costs on execution of such computations and helps to execute investigations related with changing of driving-gear elements parameters efficiently.


2007 ◽  
Vol 2007 ◽  
pp. 1-3 ◽  
Author(s):  
Umar Farooq ◽  
Habibullah Jamal ◽  
Shoab Ahmed Khan

A novel realization of IIR decimation filters is proposed which is based on merged delay transformation. The transformation is derived analytically and can be applied directly to first- and second-order IIR filters. Computational efficiency is enhanced because the current output can be directly computed fromMth old output. The output data rate is decreased byMby mergingMnumber of delay elements in the recursive path. The proposed transformation is applied to higher-order IIR filter by decomposing it into parallel first-order and second-order sections. This transformation not only gives better stability for coefficient quantization but also reduces the requirement on processing clock, for sample, rate reduction. Filtering and down sampling are performed in the same stage. Number of multiplications is reduced by 45% as compared to the conventional IIR filters where all output samples are computed.


Memorias ◽  
2018 ◽  
pp. 51-57
Author(s):  
Johan Manuel Redondo ◽  
Gerard Olivar Tost ◽  
Danny Ibarra-Vega ◽  
Carlos Peña-Rincon

This article presents preliminary results of the mathematical analysis of a national energy market. The modeling of the studied system was made from causal relationships between the supply and demand of a national energy market, obtaining a system of ordinary differential equations of the first order of the electric power capacity in construction, the electric power capacity installed and the price of electricity in the market (Redondo et.al, 2018). In the dynamic analysis of the model, a saddle-node bifurcation was identified for the case in which the elasticity of the price with respect to the reserve margin is considered null, which allowed establishing two prospective scenarios of the system: absolute disappearance of the supply of electricity or tendency of growth of the supply to the attention of the demand of the market


Sign in / Sign up

Export Citation Format

Share Document