scholarly journals 728. Baculovirus GP64 Pseudotyped Bovine Immunodeficiency Virus-Based Lentiviral Vectors Efficiently Transduce Retinal Cells In Vivo

2004 ◽  
Vol 9 ◽  
pp. S277 ◽  
Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 813-822 ◽  
Author(s):  
Thierry VandenDriessche ◽  
Lieven Thorrez ◽  
Luigi Naldini ◽  
Antonia Follenzi ◽  
Lieve Moons ◽  
...  

Abstract High-titer self-inactivating human immunodeficiency virus type-1 (HIV-1)–based vectors expressing the green fluorescent protein reporter gene that contained the central polypurine and termination tract and the woodchuck hepatitis virus posttranscriptional regulatory element were constructed. Transduction efficiency and biodistribution were determined, following systemic administration of these improved lentiviral vectors. In adult severe combined immunodeficiency (SCID) mice, efficient stable gene transfer was achieved in the liver (8.0% ± 6.0%) and spleen (24% ± 3%). Most transduced hepatocytes and nonhepatocytes were nondividing, thereby obviating the need to induce liver cell proliferation. In vivo gene transfer with this improved lentiviral vector was relatively safe since liver enzyme concentration in the plasma was only moderately and transiently elevated. In addition, nondividing major histocompatibility complex class II–positive splenic antigen-presenting cells (APCs) were efficiently transduced in SCID and normal mice. Furthermore, B cells were efficiently transduced, whereas T cells were refractory to lentiviral transduction in vivo. However, in neonatal recipients, lentiviral transduction was more widespread and included not only hepatocytes and splenic APCs but also cardiomyocytes. The present study suggests potential uses of improved lentiviral vectors for gene therapy of genetic blood disorders resulting from serum protein deficiencies, such as hemophilia, and hepatic disease. However, the use of liver-specific promoters may be warranted to circumvent inadvertent transgene expression in APCs. In addition, these improved lentiviral vectors could potentially be useful for genetic vaccination and treatment of perinatal cardiac disorders.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1173-1176 ◽  
Author(s):  
Frank Park ◽  
Kazuo Ohashi ◽  
Mark A. Kay

Lentiviral vectors have the potential to play an important role in hemophilia gene therapy. The present study used human immunodeficiency virus (HIV)-based lentiviral vectors containing an EF1 enhancer/promoter driving human factors VIII (hFVIII) or IX (hFIX) complementary DNA expression for portal vein injection into C57Bl/6 mice. Increasing doses of hFIX-expressing lentivirus resulted in a dose-dependent, sustained increase in serum hFIX levels up to approximately 50-60 ng/mL. Partial hepatectomy resulted in a 4- to 6-fold increase (P < 0.005) in serum hFIX of up to 350 ng/mL compared with the nonhepatectomized counterparts. The expression of plasma hFVIII reached 30 ng/mL (15% of normal) but was transient as the plasma levels fell concomitant with the formation of anti-hFVIII antibodies. However, hFVIII levels were persistent in immunodeficient C57Bl/6 scid mice, suggesting humoral immunity-limited gene expression in immunocompetent mice. This study demonstrates that lentiviral vectors can produce therapeutic levels of coagulation factors in vivo, which can be enhanced with hepatocellular proliferation.


2001 ◽  
Vol 82 (12) ◽  
pp. 2989-2998 ◽  
Author(s):  
Yuxing Li ◽  
Susan Carpenter

Genetic recombination is an important mechanism of retrovirus variation and diversity. Size variation in the surface (SU) glycoprotein, characterized by duplication and insertion, has been observed during in vivo infection with several lentiviruses, including bovine immunodeficiency virus (BIV), equine infectious anaemia virus (EIAV) and human immunodeficiency virus type 1. These duplication/insertion events are thought to occur through a mechanism of template switching/strand transfer during reverse transcription. Studies of RNA recombination in a number of virus systems indicate that cis-acting sequences can modulate the frequency of template switching/strand transfer. The size variable region of EIAV and BIV SU glycoproteins was examined and an AU-rich region and regions of nucleotide sequence identity that may facilitate template switching/strand transfer were identified. An in vitro strand transfer assay using donor and acceptor templates derived from the size variable region in BIV env detected both precise and imprecise strand transfer products, in addition to full-length products. Sequence analysis of clones obtained from imprecise strand transfer products showed that 87·5% had crossover sites within 10 nt of the crossover site observed in vivo. Mutations in the donor template which altered either the AU-rich region or nucleotide sequence identity dramatically decreased the frequency of imprecise strand transfer. Together, these results suggest that cis-acting elements can modulate non-homologous recombination events during reverse transcription and may contribute to the genetic and biological diversity of lentiviruses in vivo.


2006 ◽  
Vol 87 (6) ◽  
pp. 1625-1634 ◽  
Author(s):  
Viviana Buffa ◽  
Donatella R. M. Negri ◽  
Pasqualina Leone ◽  
Roberta Bona ◽  
Martina Borghi ◽  
...  

Genetic immunization using viral vectors provides an effective means to elicit antigen-specific cellular immune responses. Several viral vectors have proven efficacious in inducing immune responses after direct injection in vivo. Among them, recombinant, self-inactivating lentiviral vectors are very attractive delivery systems, as they are able to efficiently transduce into and express foreign genes in a wide variety of mammalian cells. A self-inactivating lentiviral vector was evaluated for the delivery of human immunodeficiency virus 1 (HIV-1) envelope sequences in mice in order to elicit specific immune responses. With this aim, BALB/c mice were immunized with a single injection of self-inactivating lentiviral vectors carrying either the full-length HIV-1HXB2 Rev/Env (TY2-IIIBEnv) or the codon-optimized HIV-1JR-FL gp120 (TY2-JREnv) coding sequence. Both vectors were able to elicit specific cellular responses efficiently, as measured by gamma interferon ELISPOT and chromium-release assays, upon in vitro stimulation of splenocytes from BALB/c immunized mice. However, only the TY2-JREnv-immunized mice were able to elicit specific humoral responses, measured as anti-gp120 antibody production. These data provide the first evidence that a single, direct, in vivo administration of a lentiviral vector encoding a viral gene might represent a useful strategy for vaccine development.


2008 ◽  
Vol 82 (6) ◽  
pp. 3078-3089 ◽  
Author(s):  
Aviva Joseph ◽  
Jian Hua Zheng ◽  
Antonia Follenzi ◽  
Teresa DiLorenzo ◽  
Kaori Sango ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8+ T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) α and β chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR α and TCR β chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.


2004 ◽  
Vol 78 (23) ◽  
pp. 13072-13081 ◽  
Author(s):  
Hang M. Pham ◽  
Enrique R. Argañaraz ◽  
Bettina Groschel ◽  
Didier Trono ◽  
Juan Lama

ABSTRACT CD4 down-modulation is essential for the production of human immunodeficiency virus (HIV) infectious particles. Disease progression correlates with enhanced viral induced CD4 down-modulation, and a subset of long-term nonprogressors carry viruses defective in this function. Despite multiple pieces of evidence highlighting the importance of this function in viral pathogenesis in vivo, to date, HIV-induced CD4 down-modulation has not been used as a target for intervention. We describe here HIV-based vectors that deliver truncated CD4 molecules resistant to down-modulation by the viral products Nef and Vpu. Infection of cells previously transduced with these vectors proceeded normally, and viral particles were released in normal amounts. However, the infectivity of the released virions was reduced 1,000-fold. Lentiviral vectors expressing truncated CD4 molecules were efficient at blocking HIV-1 infectivity and replication in several cell lines and in CD4-positive primary lymphocytes. The findings presented here provide proof-of-principle that approaches targeting the virus-induced CD4 down-modulation may constitute the basis for novel anti-HIV therapies.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1173-1176 ◽  
Author(s):  
Frank Park ◽  
Kazuo Ohashi ◽  
Mark A. Kay

Abstract Lentiviral vectors have the potential to play an important role in hemophilia gene therapy. The present study used human immunodeficiency virus (HIV)-based lentiviral vectors containing an EF1 enhancer/promoter driving human factors VIII (hFVIII) or IX (hFIX) complementary DNA expression for portal vein injection into C57Bl/6 mice. Increasing doses of hFIX-expressing lentivirus resulted in a dose-dependent, sustained increase in serum hFIX levels up to approximately 50-60 ng/mL. Partial hepatectomy resulted in a 4- to 6-fold increase (P &lt; 0.005) in serum hFIX of up to 350 ng/mL compared with the nonhepatectomized counterparts. The expression of plasma hFVIII reached 30 ng/mL (15% of normal) but was transient as the plasma levels fell concomitant with the formation of anti-hFVIII antibodies. However, hFVIII levels were persistent in immunodeficient C57Bl/6 scid mice, suggesting humoral immunity-limited gene expression in immunocompetent mice. This study demonstrates that lentiviral vectors can produce therapeutic levels of coagulation factors in vivo, which can be enhanced with hepatocellular proliferation.


1991 ◽  
Vol 65 (8) ◽  
pp. 4502-4507 ◽  
Author(s):  
L P Martins ◽  
N Chenciner ◽  
B Asjö ◽  
A Meyerhans ◽  
S Wain-Hobson

Sign in / Sign up

Export Citation Format

Share Document