scholarly journals 794. Evaluation of Gene Transfer Efficacy Mediated by AAV1 and AAV6 Vectors in Skeletal Muscle of Adult Mice Following Different Routes of Administration

2005 ◽  
Vol 11 ◽  
pp. S308-S309
Function ◽  
2021 ◽  
Author(s):  
Leslie M Baehr ◽  
David C Hughes ◽  
Sarah A Lynch ◽  
Delphi Van Haver ◽  
Teresa Mendes Maia ◽  
...  

Abstract MuRF1 (TRIM63) is a muscle-specific E3 ubiquitin ligase and component of the ubiquitin proteasome system. MuRF1 is transcriptionally upregulated under conditions that cause muscle loss, in both rodents and humans, and is a recognized marker of muscle atrophy. In this study, we used in vivo electroporation to determine if MuRF1 overexpression alone can cause muscle atrophy and, in combination with ubiquitin proteomics, identify the endogenous MuRF1 substrates in skeletal muscle. Overexpression of MuRF1 in adult mice increases ubiquitination of myofibrillar and sarcoplasmic proteins, increases expression of genes associated with neuromuscular junction instability, and causes muscle atrophy. A total of 169 ubiquitination sites on 56 proteins were found to be regulated by MuRF1. MuRF1-mediated ubiquitination targeted both thick and thin filament contractile proteins, as well as, glycolytic enzymes, deubiquitinases, p62, and VCP. These data reveal a potential role for MuRF1 in not only the breakdown of the sarcomere, but also the regulation of metabolism and other proteolytic pathways in skeletal muscle.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthieu Dos Santos ◽  
Stéphanie Backer ◽  
Benjamin Saintpierre ◽  
Brigitte Izac ◽  
Muriel Andrieu ◽  
...  

Abstract Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joana Esteves de Lima ◽  
Reem Bou Akar ◽  
Léo Machado ◽  
Yuefeng Li ◽  
Bernadette Drayton-Libotte ◽  
...  

AbstractThe epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes.


2004 ◽  
Vol 6 (2) ◽  
pp. 155-165
Author(s):  
Shigemi Kimura ◽  
Makoto Ikezawa ◽  
Baohong Cao ◽  
Yasunari Kanda ◽  
Ryan Pruchnic ◽  
...  

2005 ◽  
Vol 7 (4) ◽  
pp. 442-451 ◽  
Author(s):  
Jean-Pierre Louboutin ◽  
Lili Wang ◽  
James M. Wilson

1989 ◽  
Vol 9 (9) ◽  
pp. 3785-3792
Author(s):  
C J Petropoulos ◽  
M P Rosenberg ◽  
N A Jenkins ◽  
N G Copeland ◽  
S H Hughes

We have generated transgenic mouse lines that carry the promoter region of the chicken skeletal muscle alpha (alpha sk) actin gene linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. In adult mice, the pattern of transgene expression resembled that of the endogenous alpha sk actin gene. In most of the transgenic lines, high levels of CAT activity were detected in striated muscle (skeletal and cardiac) but not in the other tissues tested. In striated muscle, transcription of the transgene was initiated at the normal transcriptional start site of the chicken alpha sk actin gene. The region from nucleotides -191 to +27 of the chicken alpha sk actin gene was sufficient to direct the expression of CAT in striated muscle of transgenic mice. These observations suggest that the mechanism of tissue-specific actin gene expression is well conserved in higher vertebrate species.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Marta Szulik ◽  
Miguel Reyes-Mugica ◽  
Daniel F Marker ◽  
Lina Ghaloul-Gonzalez ◽  
Sarah Franklin

The lysine methyltransferase SMYD1 was first identified in mice and shown to be important for embryonic cardiac development. Subsequently, we reported the first analysis of SMYD1 in adult myocardium and demonstrated that cardiomyocyte-specific loss of SMYD1 lead to progressive cardiac hypertrophy and heart failure, and showed that this enzyme is necessary to maintain metabolic homeostasis through transcriptional regulation of mitochondrial energetics in adult mice. While SMYD1 has been the subject of several additional studies in zebrafish and mice, since it was first identified, only in the last few years have human patients been identified with variants in the SMYD1 gene thought to be responsible for their cardiomyopathies. Specifically, two patients have been identified to date, the first patient displaying hypertrophic cardiomyopathy had a de novo heterozygous variant (c.814T>C) and the second patient with left ventricular non-compaction cardiomyopathy and arrhythmias had a truncating heterozygous variant (c.675delA). Here we report a third patient with biventricular heart failure containing a homozygous variant (c.302A>G; p.Asn101S) in the SMYD1 gene which was identified by a whole exome sequencing. Our histopathological analysis of cardiac tissue and skeletal muscle from the proband showed abnormalities in myofibrillar organization in both cardiac and skeletal muscle suggesting that SMYD1 is necessary for sarcomere assembly and organization. In addition, we observe markedly abnormal myocardium with extensive fibrosis and multifocal calcification, and our ultrastructural (EM) analysis revealed presence of abnormal mitochondria with reduced and irregular or lost cristae. Lastly, we have performed structural modeling of SMYD1 containing the p.Asn101Ser variant (N101S) and report how this variant may affect the enzymatic activity of SMYD1 due to its proximity to the substrate binding site. The identification of this novel variant constitutes the third patient with a SMYD1 variant displaying cardiomyopathy and provides insights into the molecular functionality of this protein. In addition, this is the first analysis of tissue from a patient expressing a SMYD1 variant which provides critical insights into the role of SMYD1 in the heart and how loss of function mutations can effect cardiac physiology.


Sign in / Sign up

Export Citation Format

Share Document