Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada

2008 ◽  
Vol 70 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Thomas W.D. Edwards ◽  
S. Jean Birks ◽  
Brian H. Luckman ◽  
Glen M. MacDonald

AbstractModelling of tree-ring δ13C and δ18O data from the Columbia Icefield area in the eastern Rocky Mountains of western Canada provides fuller understanding of climatic and hydrologic variability over the past 1000 yr in this region, based on reconstruction of changes in growth season atmospheric relative humidity (RHgrs), winter temperature (Twin) and the precipitation δ18O–Twin relation. The Little Ice Age (~ AD 1530s–1890s) is marked by low RHgrs and Twin and a δ18O–Twin relation offset from that of the present, reflecting enhanced meridional circulation and persistent influence of Arctic air masses. Independent proxy hydrologic evidence suggests that snowmelt sustained relatively abundant streamflow at this time in rivers draining the eastern Rockies. In contrast, the early millennium was marked by higher RHgrs and Twin and a δ18O–Twin relation like that of the 20th century, consistent with pervasive influence of Pacific air masses because of strong zonal circulation. Especially mild conditions prevailed during the “Medieval Climate Anomaly” ~ AD 1100–1250, corresponding with evidence for reduced discharge in rivers draining the eastern Rockies and extensive hydrological drought in neighbouring western USA.

The Holocene ◽  
2016 ◽  
Vol 27 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Stephen A Wolfe ◽  
Olav B Lian ◽  
Christopher H Hugenholtz ◽  
Justine R Riches

The Bigstick and Seward Sand Hills are possibly two of the oldest dune fields within the late Wisconsin glaciated regions of the Northern Great Plains. As with most Northern Great Plains dune fields, source sediments are former proglacial outwash sands. Thus, Holocene dune construction is primarily related to spatial–temporal variations in surface cover and transport capacity, rather than renewed sediment input. However, eolian landscape reconstructions on the Northern Great Plains have been temporally constrained to recent periods of activity, as older episodes of deposition are typically reworked by younger events. In this study, sediment cores from shallow lacustrine basins and interdune areas provide an improved record of Holocene eolian sand deposition. Eolian sand accumulation in the interdunes and basins occurred between 150 and 270 years ago, 1.9 and 3.0 ka, 5.4 and 8.6 ka, and prior to ca. 10.8 ka. These episodes of sand accumulation were bracketed by lacustrine deposition and soil formation, which represented wetter conditions. Other than mid-Holocene dune activity, which may be related to peak warmth and aridity, most periods of eolian sand accumulation coincided with cooler but drier climatic events such as the Younger Dryas, late-Holocene cooling prior to the Medieval Climatic Anomaly, and the ‘Little Ice Age’. These depositional episodes are also spatially represented by other dune fields in the region, providing a broad-scale view of the connections between past climatic events and eolian landscape evolution on the Northern Great Plains.


2014 ◽  
Vol 128 (2) ◽  
pp. 204
Author(s):  
Paul Hendricks ◽  
Susan Lenard

Range maps for Pygmy Shrew (Sorex hoyi) show a large hiatus over much of the northern Great Plains between the Rocky Mountains and eastern North Dakota. We report a new record of the Pygmy Shrew in northeastern Montana, review previous records for the state and adjacent regions bordering Montana to the north and east, and suggest that the range boundary in the northern Great Plains be redrawn farther south to include all of Montana north of the Missouri River. This is consistent with the known range of the Pygmy Shrew in eastern North Dakota and South Dakota, where the species has been documented only north and east of the Missouri River, although records are still lacking from north of the Missouri River in northwestern North Dakota and adjacent regions of Canada. Pygmy Shrews will probably be found at additional localities in prairie regions of Canada adjacent to Montana, most likely in association with prairie pothole wetlands, river bottom riparian vegetation, and hardwood draws.


2017 ◽  
Vol 13 (3) ◽  
pp. 267-301 ◽  
Author(s):  
Lilo M. K. Henke ◽  
F. Hugo Lambert ◽  
Dan J. Charman

Abstract. The El Niño–Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature–precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD  ∼  800–1300) and the Little Ice Age (LIA; AD  ∼  1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records and establish the long-term stability of this important mode of climatic variability.


2000 ◽  
Vol 37 (5) ◽  
pp. 661-681 ◽  
Author(s):  
K Gajewski ◽  
Robert Vance ◽  
M Sawada ◽  
Inez Fung ◽  
L Dennis Gignac ◽  
...  

The climate of North America and the adjacent ocean at 6000 BP was estimated using five independent approaches. Using pollen data, the terrestrial climate was estimated by the movement of ecozone boundaries and by the method of modern analogues. Both analyses indicate warmer temperatures in the western Great Lakes area and the northern Great Plains. A model of Sphagnum-dominated peatland initiation, when forced by Canadian Climate Model 6 ka output projected a cooler and (or) wetter climate for continental western North America. Contrary to this, a reconstruction of the distribution of Sphagnum-dominated peatlands in western Canada indicates that they were located north of their modern distribution, suggesting warmer and (or) drier conditions at 6000 BP. This interpretation is strengthened by observations of lower lake levels at 6000 BP in western Canada. This drier climate may have been associated with warmer conditions as indicated by the quantitative climate reconstructions. In general, eastern North America was drier, while western North America was warmer and drier at 6 ka compared to the present. A model of vegetation and carbon storage, when forced using 6 ka Canadian Climate Model and pollen-based climate reconstructions, showed an increase in area covered by boreal forest, extending north and south of the present location. This was not, however, verified by the fossil data. Additionally, the model showed little total change in carbon storage at 6 ka in the terrestrial biosphere. Estimated sea surface temperatures off eastern Canada suggest warmer surface waters at 6 ka, in agreement with reconstructions based on terrestrial records from the eastern seaboard.


2018 ◽  
Vol 14 (5) ◽  
pp. 665-686 ◽  
Author(s):  
Bryan N. Shuman ◽  
Cody Routson ◽  
Nicholas McKay ◽  
Sherilyn Fritz ◽  
Darrell Kaufman ◽  
...  

Abstract. A synthesis of 93 hydrologic records from across North and Central America, and adjacent tropical and Arctic islands, reveals centennial to millennial trends in the regional hydroclimates of the Common Era (CE; past 2000 years). The hydrological records derive from materials stored in lakes, bogs, caves, and ice from extant glaciers, which have the continuity through time to preserve low-frequency ( > 100 year) climate signals that may extend deeper into the Holocene. The most common pattern, represented in 46 (49 %) of the records, indicates that the centuries before 1000 CE were drier than the centuries since that time. Principal component analysis indicates that millennial-scale trends represent the dominant pattern of variance in the southwestern US, northeastern US, mid-continent, Pacific Northwest, Arctic, and tropics, although not all records within a region show the same direction of change. The Pacific Northwest and the southernmost tier of the tropical sites tended to dry toward present, as many other areas became wetter than before. In 22 records (24 %), the Medieval Climate Anomaly period (800–1300 CE) was drier than the Little Ice Age (1400–1900 CE), but in many cases the difference was part of the longer millennial-scale trend, and, in 25 records (27 %), the Medieval Climate Anomaly period represented a pluvial (wet) phase. Where quantitative records permitted a comparison, we found that centennial-scale fluctuations over the Common Era represented changes of 3–7 % in the modern interannual range of variability in precipitation, but the accumulation of these long-term trends over the entirety of the Holocene caused recent centuries to be significantly wetter, on average, than most of the past 11 000 years.


Sign in / Sign up

Export Citation Format

Share Document