Liver tumor formation in female rat induced by fluopyram is mediated by CAR/PXR nuclear receptor activation

2014 ◽  
Vol 70 (3) ◽  
pp. 648-658 ◽  
Author(s):  
H. Tinwell ◽  
D. Rouquié ◽  
F. Schorsch ◽  
D. Geter ◽  
S. Wason ◽  
...  
2004 ◽  
Vol 64 (20) ◽  
pp. 7197-7200 ◽  
Author(s):  
Yukio Yamamoto ◽  
Rick Moore ◽  
Thomas L. Goldsworthy ◽  
Masahiko Negishi ◽  
Robert R. Maronpot

2001 ◽  
pp. 489-495
Author(s):  
Gary J. Smith ◽  
Sharon C. Presnell ◽  
William B. Coleman ◽  
Joe W. Grisham
Keyword(s):  

2020 ◽  
Vol 295 (12) ◽  
pp. 3932-3944 ◽  
Author(s):  
Melany J. Wagner ◽  
Marilyn S. Hsiung ◽  
Gerald D. Gish ◽  
Rick D. Bagshaw ◽  
Sasha A. Doodnauth ◽  
...  

Eph receptors are a family of receptor tyrosine kinases that control directional cell movement during various biological processes, including embryogenesis, neuronal pathfinding, and tumor formation. The biochemical pathways of Eph receptors are context-dependent in part because of the varied composition of a heterotypic, oligomeric, active Eph receptor complex. Downstream of the Eph receptors, little is known about the essential phosphorylation events that define the context and instruct cell movement. Here, we define a pathway that is required for Eph receptor B2 (EphB2)–mediated cell sorting and is conserved among multiple Eph receptors. Utilizing a HEK293 model of EphB2+/ephrinB1+ cell segregation, we found that the scaffold adaptor protein SH2 domain–containing adaptor protein B (Shb) is essential for EphB2 functionality. Further characterization revealed that Shb interacts with known modulators of cytoskeletal rearrangement and cell mobility, including Nck adaptor protein (Nck), p120-Ras GTPase-activating protein (RasGAP), and the α- and β-Chimaerin Rac GAPs. We noted that phosphorylation of Tyr297, Tyr246, and Tyr336 of Shb is required for EphB2–ephrinB1 boundary formation, as well as binding of Nck, RasGAP, and the chimaerins, respectively. Similar complexes were formed in the context of EphA4, EphA8, EphB2, and EphB4 receptor activation. These results indicate that phosphotyrosine-mediated signaling through Shb is essential in EphB2-mediated heterotypic cell segregation and suggest a conserved function for Shb downstream of multiple Eph receptors.


2020 ◽  
Vol 295 (45) ◽  
pp. 15210-15225 ◽  
Author(s):  
Masahiko Negishi ◽  
Kaoru Kobayashi ◽  
Tsutomu Sakuma ◽  
Tatsuya Sueyoshi

Nuclear pregnane X receptor (PXR, NR1I2) and constitutive active/androstane receptor (CAR, NR1I3) are nuclear receptors characterized in 1998 by their capability to respond to xenobiotics and activate cytochrome P450 (CYP) genes. An anti-epileptic drug, phenobarbital (PB), activates CAR and its target CYP2B genes, whereas PXR is activated by drugs such as rifampicin and statins for the CYP3A genes. Inevitably, both nuclear receptors have been investigated as ligand-activated nuclear receptors by identifying and characterizing xenobiotics and therapeutics that directly bind CAR and/or PXR to activate them. However, PB, which does not bind CAR directly, presented an alternative research avenue for an indirect ligand-mediated nuclear receptor activation mechanism: phosphorylation-mediated signal regulation. This review summarizes phosphorylation-based mechanisms utilized by xenobiotics to elicit cell signaling. First, the review presents how PB activates CAR (and other nuclear receptors) through a conserved phosphorylation motif located between two zinc fingers within its DNA-binding domain. PB-regulated phosphorylation at this motif enables nuclear receptors to form communication networks, integrating their functions. Next, the review discusses xenobiotic-induced PXR activation in the absence of the conserved DNA-binding domain phosphorylation motif. In this case, phosphorylation occurs at a motif located within the ligand-binding domain to transduce cell signaling that regulates hepatic energy metabolism. Finally, the review delves into the implications of xenobiotic-induced signaling through phosphorylation in disease development and progression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gregory Carbonetti ◽  
Tessa Wilpshaar ◽  
Jessie Kroonen ◽  
Keith Studholme ◽  
Cynthia Converso ◽  
...  

AbstractProstate cancer (PCa) is defined by dysregulated lipid signaling and is characterized by upregulation of lipid metabolism-related genes including fatty acid binding protein 5 (FABP5), fatty acid synthase (FASN), and monoacylglycerol lipase (MAGL). FASN and MAGL are enzymes that generate cellular fatty acid pools while FABP5 is an intracellular chaperone that delivers fatty acids to nuclear receptors to enhance PCa metastasis. Since FABP5, FASN, and MAGL have been independently implicated in PCa progression, we hypothesized that FABP5 represents a central mechanism linking cytosolic lipid metabolism to pro-metastatic nuclear receptor signaling. Here, we show that the abilities of FASN and MAGL to promote nuclear receptor activation and PCa metastasis are critically dependent upon co-expression of FABP5 in vitro and in vivo. Our findings position FABP5 as a key driver of lipid-mediated metastasis and suggest that disruption of lipid signaling via FABP5 inhibition may constitute a new avenue to treat metastatic PCa.


2004 ◽  
Vol 286 (2) ◽  
pp. F417-F424 ◽  
Author(s):  
Hae-Seong Yoon ◽  
Sampath Ramachandiran ◽  
Mary Anne S. Chacko ◽  
Terrence J. Monks ◽  
Serrine S. Lau

The tuberous sclerosis-2 ( Tsc-2) gene is a suppressor of renal tumorigenesis and an early target of reactive oxygen species-induced renal cancer. Tuberin, the protein product of the Tsc-2 gene, participates in the regulation of cell proliferation, although the mechanism by which it suppresses proliferation is unknown. Quinol-thioether-transformed rat renal epithelial (QT-RRE) cell lines, derived from quinol-thioether-transformed primary renal epithelial cells from Eker rats, lack tuberin expression due to loss of heterozygosity of the Tsc-2 gene. These cell lines were used to examine the mechanism by which tuberin exerts its antiproliferative action. Loss of tuberin function correlates with high ERK activity ( 39 ), which could contribute to the formation of renal tumors. In this study, we sought to identify possible downstream effectors regulated by tuberin, using QT-RRE cells transfected with Tsc-2 cDNA to restore tuberin expression. Constitutively high ERK, B-Raf, and Raf-1 activities were observed in QT-RRE cells. However, restoration of tuberin expression in QT-RRE cells by transient transfection with Tsc-2 cDNA substantially decreased both ERK and B-Raf activity, with only modest changes in Raf-1 activity, suggesting tuberin functions as an upstream negative regulator of the ERK pathway. High ERK activity was not mediated through EGF receptor activation, but treatment with genistein demonstrated that protein kinases are involved in ERK cascade activation. The data indicate that loss of tuberin results in the upregulation of the ERK signaling pathway with subsequent increases in new DNA synthesis, and ultimately, tumor formation.


1986 ◽  
Vol 7 (6) ◽  
pp. 981-985 ◽  
Author(s):  
Agneta Blanck ◽  
Tiiu Hansson ◽  
Jan-Ake Gustafsson ◽  
Lennart C. Eriksson

2008 ◽  
Vol 11 (Suppl 1) ◽  
pp. P236
Author(s):  
J Svard ◽  
JP Spiers ◽  
F Mulcahy ◽  
M Hennessy

Sign in / Sign up

Export Citation Format

Share Document