Validation and quantitation of an in vitro M-cell model

2002 ◽  
Vol 299 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Peter Tyrer ◽  
A Ruth Foxwell ◽  
Jennelle Kyd ◽  
Matthew Harvey ◽  
Phillip Sizer ◽  
...  
Keyword(s):  
2011 ◽  
Vol 30 (2) ◽  
pp. 37-44 ◽  
Author(s):  
Kazuya Masuda ◽  
Akinobu Kajikawa ◽  
Shizunobu Igimi
Keyword(s):  
M Cell ◽  

Microbiology ◽  
2008 ◽  
Vol 154 (12) ◽  
pp. 3887-3894 ◽  
Author(s):  
Isabel Martinez-Argudo ◽  
Mark A. Jepson
Keyword(s):  

2010 ◽  
Vol 84 (23) ◽  
pp. 12285-12291 ◽  
Author(s):  
Kohtaro Miyazawa ◽  
Takashi Kanaya ◽  
Ikuro Takakura ◽  
Sachi Tanaka ◽  
Tetsuya Hondo ◽  
...  

ABSTRACT Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.


Author(s):  
Tatsuya Ono ◽  
Kazuya Masuda ◽  
Akinobu Kajikawa ◽  
Kenji Yokota ◽  
Shizunobu Igimi
Keyword(s):  

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 225-226
Author(s):  
G M Baruta ◽  
H Zhang ◽  
L Alston ◽  
S A Hirota

Abstract Background Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne’s disease (JD) in ruminants. Following infection, JD may present as enteritis, leading to wasting, often causing premature culling of livestock. Beyond veterinary medicine, several mycobacterium species, including MAP, have been implicated in human gastrointestinal disease. While MAP has been incriminated in causing Crohn’s disease (a claim that has yet to be substantiated), there are confirmed cases of MAP infection in immunocompromised individuals, causing profuse diarrhea, fever, and drastic weight loss. Given the economic burden associated with MAP infection, considerable efforts have sought to understand its dynamics. However, these processes have not been completely characterized, hindering our ability to generate novel anti-infective agents. While the current paradigm suggests that MAP travels to the small intestine, gaining entry through the epithelium, the exact cellular tropism and the mechanism(s) of entry are not well defined. Therefore, we have developed an ex vivo enteroid-based system to visualize invasion of MAP in distinct cells of the intestinal epithelium using a GFP-expressing MAP strain. With this, we sought to test the hypothesis that MAP invasion occurs via M cells through receptor-mediated transcytosis. Aims 1) Characterize experimental system and visualize MAP invasion 2) Determine cellular tropism 3) Uncover mechanisms underlying MAP invasion Methods Enteroids (2D and 3D) were generated and M cell differentiation induced via addition of RANKL. Confluent ileal monolayers were exposed to GFP-expressing MAP strain (K10 pWES4). Confocal microscopy was performed, and barrier function was measured via transepithelial electrical resistance (TEER). Results We generated 3D enteroids and confluent enteroid-derived monolayers with functional M cells capable of transcytosis. MAP was detected mainly within M cells. We further confirmed this finding using a human in vitro M cell model, the Caco-2/Raji-B co-culture system. Furthermore, alterations in TEER following MAP exposure in monolayers cultured with RANKL, triggering M cell differentiation, suggest the existence of a novel mechanism by which MAP disrupts the barrier to invade the mucosa. Conclusions Our results suggest that MAP translocates across the epithelium predominantly via M cells, as shown both in a human and murine model. This newly optimized approach provides an experimental system that will enable us to better characterize M cell-MAP interactions, with the hopes of identifying new therapeutic targets to prevent the spread of MAP and reduce economic impact of JD. Beyond MAP infection, this novel ex vivo system has potential to elucidate other host-pathogen interactions. Funding Agencies Natural Sciences and Engineering Research Council of Canada (NSERC)


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


Sign in / Sign up

Export Citation Format

Share Document