Spatially-explicit simulation of the effect of prescribed burning on fire regimes and plant extinctions in shrublands typical of south-eastern Australia

1998 ◽  
Vol 86 (1) ◽  
pp. 83-95 ◽  
Author(s):  
R.A. Bradstock ◽  
M. Bedward ◽  
B.J. Kenny ◽  
J. Scott
2008 ◽  
Vol 17 (6) ◽  
pp. 809 ◽  
Author(s):  
Ross A. Bradstock

Large fires coincident with drought occurred in south-eastern Australia during 2001–2007. Perceptions of large, intense fires as being ecologically ‘disastrous’ are common. These are summarised by four hypotheses characterising large fires as: (i) homogenous in extent and intensity; (ii) causing large-scale extinction due to perceived lack of survival and regeneration capacity among biota; (iii) degrading due to erosion and related edaphic effects; (iv) unnatural, as a consequence of contemporary land management. These hypotheses are examined using available evidence and shown to inadequately account for effects of large fires on biodiversity. Large fires do not burn homogeneously, though they may produce intensely burnt patches and areas. The bulk of biota are resilient through a variety of in situ persistence mechanisms that are reinforced by landscape factors. Severe erosive episodes following fire tend to be local and uncertain rather than global and inevitable. Redistribution of soil and nutrients may reinforce habitat variation in some cases. Signals of fire are highly variable over prehistoric and historic eras, and, in some cases, contemporary and pre-European signal levels are equivalent. The most important effects of large fires in these diverse ecological communities and landscapes stem from their recurrence rate. Adaptive management of fire regimes rather than fire events is required, based on an understanding of risks posed by particular regimes to biota.


2014 ◽  
Vol 40 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Sarsha Gorissen ◽  
Jacqueline Mallinson ◽  
Matthew Greenlees ◽  
Richard Shine

Web Ecology ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 47-54 ◽  
Author(s):  
T. D. Auld ◽  
M. K. J. Ooi

Abstract. We examine the patterns of germination response to fire in the fire-prone flora of the Sydney basin, south-eastern Australia, using examples from several decades of research. The flora shows a strong response to fire-related germination cues. Most species show an interaction between heat and smoke, a number respond only to heat, whilst a few are likely to respond only to smoke. Many recruit in the first 12 months after fire and show no obvious seasonal patterns of recruitment, whilst several species have a strong seasonal germination requirement, even in this essentially aseasonal rainfall region. Key challenges remaining include designing future seed germination studies within the context of informing the germination response surface to smoke and heat interactions, and incorporation of the impact of varying soil moisture on seed germination post-fire, including its affect on resetting of seed dormancy. An understanding of the resilience of species to frequent fire also requires further work, to identify species and functional types most at risk. This work must ideally be integrated within the framework of the management of fire regimes that will change under a changing climate. We suggest that the functional classification of plant types in relation to fire could be enhanced by a consideration of both the type of germination response to fire (type of cues required) and the timing of the response (seasonally driven in response to seed dormancy characteristics, or independent of season). We provide a simplified version of such an addition to functional trait classification in relation to fire.


2020 ◽  
Vol 83 (1) ◽  
pp. 4-28 ◽  
Author(s):  
G. W. Morgan ◽  
K. G. Tolhurst ◽  
M. W. Poynter ◽  
N. Cooper ◽  
T. McGuffog ◽  
...  

2012 ◽  
Vol 149 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Luke Collins ◽  
Ross A. Bradstock ◽  
Elizabeth M. Tasker ◽  
Robert J. Whelan

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242484
Author(s):  
Bang Nguyen Tran ◽  
Mihai A. Tanase ◽  
Lauren T. Bennett ◽  
Cristina Aponte

Wildfires have increased in size and frequency in recent decades in many biomes, but have they also become more severe? This question remains under-examined despite fire severity being a critical aspect of fire regimes that indicates fire impacts on ecosystem attributes and associated post-fire recovery. We conducted a retrospective analysis of wildfires larger than 1000 ha in south-eastern Australia to examine the extent and spatial pattern of high-severity burned areas between 1987 and 2017. High-severity maps were generated from Landsat remote sensing imagery. Total and proportional high-severity burned area increased through time. The number of high-severity patches per year remained unchanged but variability in patch size increased, and patches became more aggregated and more irregular in shape. Our results confirm that wildfires in southern Australia have become more severe. This shift in fire regime may have critical consequences for ecosystem dynamics, as fire-adapted temperate forests are more likely to be burned at high severities relative to historical ranges, a trend that seems set to continue under projections of a hotter, drier climate in south-eastern Australia.


Sign in / Sign up

Export Citation Format

Share Document