Expression of Niemann–Pick type C transcript in rodent cerebellum in vivo and in vitro

1999 ◽  
Vol 839 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Torsten Falk ◽  
William S. Garver ◽  
Robert P. Erickson ◽  
Jean M. Wilson ◽  
Andrea J. Yool
Keyword(s):  
Type C ◽  
2021 ◽  
Vol 15 ◽  
Author(s):  
Lien Van Hoecke ◽  
Caroline Van Cauwenberghe ◽  
Kristina Dominko ◽  
Griet Van Imschoot ◽  
Elien Van Wonterghem ◽  
...  

Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.


2022 ◽  
Author(s):  
Nick Platt ◽  
Dawn Shepherd ◽  
Yuzhe Weng ◽  
Grant Charles Churchill ◽  
Antony Galione ◽  
...  

The lysosome is a dynamic signaling organelle that is critical for cell functioning. It is a regulated calcium store that can contribute to Ca2+-regulated processes via both local calcium release and more globally by influencing ER Ca2+release. Here, we provide evidence from studies of an authentic mouse model of the lysosomal storage disease Niemann-Pick Type C (NPC) that has reduced lysosomal Ca2+ levels, and genetically modified mice in which the two-pore lysosomal Ca2+ release channel family are deleted that lysosomal Ca2+ signaling is required for normal pro-inflammatory responses. We demonstrate that production of the pro-inflammatory cytokine IL-1beta via the NLRP3 inflammasome is significantly reduced in murine Niemann-Pick Type C, the inhibition is selective because secretion of TNF alpha is not diminished, and it is a consequence of inefficient inflammasome priming. Synthesis of precursor ProIL-1 beta is significantly reduced in macrophages genetically deficient in the lysosomal protein Npc1, which is mutated in most clinical cases of NPC, and in wild type cells in which Npc1 activity is pharmacologically inhibited. Comparable reductions in ProIL-1 beta generation were measured in vitro and in vivo by macrophages genetically altered to lack expression of the two-pore lysosomal Ca2+ release channels Tpcn1 or Tpcn2. These data demonstrate a requirement for lysosome-dependent Ca2+ signaling in the generation of specific pro-inflammatory responses.


2019 ◽  
Vol 20 (5) ◽  
pp. 1152 ◽  
Author(s):  
Nushrat Yasmin ◽  
Yoichi Ishitsuka ◽  
Madoka Fukaura ◽  
Yusei Yamada ◽  
Shuichi Nakahara ◽  
...  

Niemann-Pick disease Type C (NPC) is a rare lysosomal storage disease characterized by the dysfunction of intracellular cholesterol trafficking with progressive neurodegeneration and hepatomegaly. We evaluated the potential of 6-O-α-maltosyl-β-cyclodextrin (G2-β-CD) as a drug candidate against NPC. The physicochemical properties of G2-β-CD as an injectable agent were assessed, and molecular interactions between G2-β-CD and free cholesterol were studied by solubility analysis and two-dimensional proton nuclear magnetic resonance spectroscopy. The efficacy of G2-β-CD against NPC was evaluated using Npc1 deficient Chinese hamster ovary (CHO) cells and Npc1 deficient mice. G2-β-CD in aqueous solution showed relatively low viscosity and surface activity; characteristics suitable for developing injectable formulations. G2-β-CD formed higher-order inclusion complexes with free cholesterol. G2-β-CD attenuated dysfunction of intercellular cholesterol trafficking and lysosome volume in Npc1 deficient CHO cells in a concentration dependent manner. Weekly subcutaneous injections of G2-β-CD (2.9 mmol/kg) ameliorated abnormal cholesterol metabolism, hepatocytomegaly, and elevated serum transaminases in Npc1 deficient mice. In addition, a single cerebroventricular injection of G2-β-CD (21.4 μmol/kg) prevented Purkinje cell loss in the cerebellum, body weight loss, and motor dysfunction in Npc1 deficient mice. In summary, G2-β-CD possesses characteristics favorable for injectable formulations and has therapeutic potential against in vitro and in vivo NPC models.


Author(s):  
Nushrat Yasmin ◽  
Yoichi Ishitsuka ◽  
Yusei Yamada ◽  
Madoka Fukaura ◽  
Shuichi Nakahara ◽  
...  

2020 ◽  
Author(s):  
Dario Carradori ◽  
Hsintsung Chen ◽  
Beat Werner ◽  
Aagam Shah ◽  
Chiara Leonardi ◽  
...  

AbstractNiemann-Pick Disease Type C (NPC) is a severe neurovisceral disorder that is pathophysiologically characterized by intracellular transport abnormalities leading to cytoplasmic accumulation of lipids such as cholesterol and multiple sphingolipids, including sphingosine. The compound 2-hydroxypropyl-β-cyclodextrin (HPβCD) is a compound with high cholesterol complexation capacity and is currently under clinical investigation for the treatment of NPC. However, due to its short blood half-life, high doses are required to produce a therapeutic effect. It has been reported in mice that HPβCD’s circulation time and efficacy can be improved by increasing its size via polymerization, but the biodegradable nature of these systems did not allow the contribution of the macromolecule to the activity to be determined. In this work, stable forms of polymerized HPβCD were generated (via epichlorohydrin crosslinking) to investigate their in vitro mechanisms of action and in vivo effects. Crosslinked CDs (8-312 kDa) displayed a 10-fold greater complexation capacity towards cholesterol than monomeric HPβCD but were taken up by cells to a lower extent (in a size-dependent fashion), resulting in an overall comparable in vitro effect on intracellular cholesterol accumulation that was dependent on cholesterol complexation. When tested in vivo, the crosslinked 19.3 kDa HPβCD exhibited a longer terminal half-life than the monomeric HPβCD. However, it did not increase the life span of Npc1 mice, possibly due to reduced organ penetration and brain diffusion consequence of its large molecular weight. This could be circumvented by the application of magnetic resonance imaging-guided low intensity-pulsed focused ultrasound (MRIg-FUS), which increased the brain penetration of the CD. In conclusion, stable forms of polymerized HPβCD constitute valuable tools to elucidate CDs’ mechanism of action. Moreover, the use of MRIg-FUS to maximize CDs tissue penetration warrants further investigation, as it may be key to harnessing CDs full therapeutic potential in the treatment of NPC.Graphical abstractThe 2-hydroxypropyl-β-cyclodextrin (HPβCD) is a well-established pharmaceutical excipient that can complex cholesterol and is currently under clinical investigation to treat Niemann-Pick Disease Type C (NPC). However, high doses of the drug are needed to achieve a therapeutic effect. Using stable and long circulating crosslinked HPβCDs, this study attempts to further understand the mechanisms behind CDs’ activity.


2004 ◽  
Vol 82 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Norma Marchesini ◽  
Yusuf A Hannun

Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingo myelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glu ta thi one, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).Key words: sphingomyelinase, ceramide, apoptosis, Niemann-Pick disease, FAN (factor associated with N-SMase activation).


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 802 ◽  
Author(s):  
Yuki Maeda ◽  
Keiichi Motoyama ◽  
Rena Nishiyama ◽  
Taishi Higashi ◽  
Risako Onodera ◽  
...  

Niemann-Pick type C disease (NPC) is a fatal, autosomal recessive disorder, which causes excessive accumulation of free cholesterol in endolysosomes, resulting in progressive hepatomegaly and neurodegeneration. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used at a high dose for the treatment of NPC, risking lung toxicity and hearing loss during treatment. One method to reduce the required dose of HP-β-CyD for the treatment of hepatomegaly is to actively deliver β-cyclodextrin (β-CyD) to hepatocytes. Previously, we synthesized lactosyl-β-CyD (Lac-β-CyD) and demonstrated that it lowers cholesterol in NPC model liver cells. In the present study, we studied the efficacy and safety of Lac-β-CyD treatment of hepatomegaly in Npc1−/− mice. After subcutaneous administration, Lac-β-CyD accumulated in the liver and reduced hepatomegaly with greater efficacy than HP-β-CyD. In addition, subcutaneous administration of a very high dose of Lac-β-CyD was less toxic to the lungs than HP-β-CyD. Notably, the accumulation of intracellular free cholesterol in endolysosomes of NPC-like liver cells was significantly lower after administration of Lac-β-CyD than after treatment with HP-β-CyD. In conclusion, these results suggest that Lac-β-CyD is a candidate for the effective treatment of hepatomegaly in NPC.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Seung-Eun Lee ◽  
Nari Shin ◽  
Myung Geun Kook ◽  
Dasom Kong ◽  
Nam Gyo Kim ◽  
...  

AbstractRecent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 or NPC2. The pathological features underlying NPC are characterized by the abnormal accumulation of cholesterol in acidic compartments, including late endosomes and lysosomes. Due to the inaccessibility of brain tissues from human NPC patients, we developed NPC brain organoids with induced neural stem cells from NPC patient-derived fibroblasts. NPC organoids exhibit significantly reduced size and proliferative ability, which are accompanied by accumulation of cholesterol, impairment in neuronal differentiation, and autophagic flux and dysfunction of lysosomes; therefore, NPC organoids can recapitulate the main phenotypes of NPC patients. Furthermore, these pathological phenotypes observed in NPC organoids were reversed by treatment with valproic acid and HPBCD, which are known to be an effective treatment for several neurodegenerative diseases. Our data present patient-specific phenotypes in 3D organoid-based models of NPC and highlight the application of this model to drug screening in vitro.


2017 ◽  
Vol 120 (1-2) ◽  
pp. S71
Author(s):  
Prakrit V. Jena ◽  
Thomas V. Galassi ◽  
Daniel Roxbury ◽  
Robert E. Schwartz ◽  
Frederick R. Maxfield ◽  
...  

2011 ◽  
Vol 35 (3) ◽  
pp. 528-536 ◽  
Author(s):  
John W. Totenhagen ◽  
Silvia Lope-Piedrafita ◽  
Ivan A. Borbon ◽  
Eriko S. Yoshimaru ◽  
Robert P. Erickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document