scholarly journals Release of acidic store calcium is required for effective priming of the NLRP3 inflammasome

2022 ◽  
Author(s):  
Nick Platt ◽  
Dawn Shepherd ◽  
Yuzhe Weng ◽  
Grant Charles Churchill ◽  
Antony Galione ◽  
...  

The lysosome is a dynamic signaling organelle that is critical for cell functioning. It is a regulated calcium store that can contribute to Ca2+-regulated processes via both local calcium release and more globally by influencing ER Ca2+release. Here, we provide evidence from studies of an authentic mouse model of the lysosomal storage disease Niemann-Pick Type C (NPC) that has reduced lysosomal Ca2+ levels, and genetically modified mice in which the two-pore lysosomal Ca2+ release channel family are deleted that lysosomal Ca2+ signaling is required for normal pro-inflammatory responses. We demonstrate that production of the pro-inflammatory cytokine IL-1beta via the NLRP3 inflammasome is significantly reduced in murine Niemann-Pick Type C, the inhibition is selective because secretion of TNF alpha is not diminished, and it is a consequence of inefficient inflammasome priming. Synthesis of precursor ProIL-1 beta is significantly reduced in macrophages genetically deficient in the lysosomal protein Npc1, which is mutated in most clinical cases of NPC, and in wild type cells in which Npc1 activity is pharmacologically inhibited. Comparable reductions in ProIL-1 beta generation were measured in vitro and in vivo by macrophages genetically altered to lack expression of the two-pore lysosomal Ca2+ release channels Tpcn1 or Tpcn2. These data demonstrate a requirement for lysosome-dependent Ca2+ signaling in the generation of specific pro-inflammatory responses.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dorian V. Ziegler ◽  
David Vindrieux ◽  
Delphine Goehrig ◽  
Sara Jaber ◽  
Guillaume Collin ◽  
...  

AbstractCellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Seung-Eun Lee ◽  
Nari Shin ◽  
Myung Geun Kook ◽  
Dasom Kong ◽  
Nam Gyo Kim ◽  
...  

AbstractRecent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 or NPC2. The pathological features underlying NPC are characterized by the abnormal accumulation of cholesterol in acidic compartments, including late endosomes and lysosomes. Due to the inaccessibility of brain tissues from human NPC patients, we developed NPC brain organoids with induced neural stem cells from NPC patient-derived fibroblasts. NPC organoids exhibit significantly reduced size and proliferative ability, which are accompanied by accumulation of cholesterol, impairment in neuronal differentiation, and autophagic flux and dysfunction of lysosomes; therefore, NPC organoids can recapitulate the main phenotypes of NPC patients. Furthermore, these pathological phenotypes observed in NPC organoids were reversed by treatment with valproic acid and HPBCD, which are known to be an effective treatment for several neurodegenerative diseases. Our data present patient-specific phenotypes in 3D organoid-based models of NPC and highlight the application of this model to drug screening in vitro.


1999 ◽  
Vol 839 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Torsten Falk ◽  
William S. Garver ◽  
Robert P. Erickson ◽  
Jean M. Wilson ◽  
Andrea J. Yool
Keyword(s):  
Type C ◽  

2021 ◽  
Vol 15 ◽  
Author(s):  
Lien Van Hoecke ◽  
Caroline Van Cauwenberghe ◽  
Kristina Dominko ◽  
Griet Van Imschoot ◽  
Elien Van Wonterghem ◽  
...  

Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.


2019 ◽  
Vol 20 (5) ◽  
pp. 1152 ◽  
Author(s):  
Nushrat Yasmin ◽  
Yoichi Ishitsuka ◽  
Madoka Fukaura ◽  
Yusei Yamada ◽  
Shuichi Nakahara ◽  
...  

Niemann-Pick disease Type C (NPC) is a rare lysosomal storage disease characterized by the dysfunction of intracellular cholesterol trafficking with progressive neurodegeneration and hepatomegaly. We evaluated the potential of 6-O-α-maltosyl-β-cyclodextrin (G2-β-CD) as a drug candidate against NPC. The physicochemical properties of G2-β-CD as an injectable agent were assessed, and molecular interactions between G2-β-CD and free cholesterol were studied by solubility analysis and two-dimensional proton nuclear magnetic resonance spectroscopy. The efficacy of G2-β-CD against NPC was evaluated using Npc1 deficient Chinese hamster ovary (CHO) cells and Npc1 deficient mice. G2-β-CD in aqueous solution showed relatively low viscosity and surface activity; characteristics suitable for developing injectable formulations. G2-β-CD formed higher-order inclusion complexes with free cholesterol. G2-β-CD attenuated dysfunction of intercellular cholesterol trafficking and lysosome volume in Npc1 deficient CHO cells in a concentration dependent manner. Weekly subcutaneous injections of G2-β-CD (2.9 mmol/kg) ameliorated abnormal cholesterol metabolism, hepatocytomegaly, and elevated serum transaminases in Npc1 deficient mice. In addition, a single cerebroventricular injection of G2-β-CD (21.4 μmol/kg) prevented Purkinje cell loss in the cerebellum, body weight loss, and motor dysfunction in Npc1 deficient mice. In summary, G2-β-CD possesses characteristics favorable for injectable formulations and has therapeutic potential against in vitro and in vivo NPC models.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1256-1256 ◽  
Author(s):  
Angelica A. Silveira ◽  
Clare Cunningham ◽  
Emma Corr ◽  
Wilson Alves Ferreira ◽  
Fernando F. Costa ◽  
...  

Abstract Intravascular hemolysis results in the release of damaging hemoglobin and free heme into the circulation. A role for heme as a danger associated molecular pattern (DAMP), with a function in sterile inflammatory responses, is becoming increasingly recognized. Whilst heme has known effects on leukocytes, activating their migration, adhesion molecule expression and cytokine expression, more recent data demonstrate that this molecule can induce NLRP3 inflammasome formation in murine bone marrow macrophages, with consequent interleukin (IL)-1β processing and neutrophil recruitment (Dutra et al., Proc. Natl Acad Sci. 111: E4110, 2014). We aimed to investigate whether heme can also induce inflammasome activation in primary human macrophages (hMACs) and to further characterize the pathways by which heme-induced inflammatory responses may be amplified under sterile conditions. CD14+ cells were separated from human peripheral blood (using anti-CD14 magnetic beads) and differentiated into hMACs under M-CSF media supplementation and in the presence of 10% fetal bovine serum. In vitro results are expressed as means ± SEM for triplicate cultures and are representative of three independent experiments. Priming of hMACs with lipopolysaccharide (LPS; 100 ng/mL; 3h) alone induced low level secretion of IL-1β (14.11±9.2 pg/106 cells, as measured by ELISA), while heme (50 µM), in the absence of pre-stimulation with LPS, was unable to induce significant IL-1β secretion within 3h (2.46±1.4 pg/106 cells). In contrast, co-incubation of hMACs with both LPS and heme for 3h significantly enhanced hMAC IL-1β release (490.3±36.3 pg/106 cells; P<0.05 compared to LPS alone). The inflamassome pathway inhibitors, MCC950 (5 µM; a specific inhibitor of NLRP3) and YVAD (40 µM; a caspase-1 inhibitor) significantly inhibited IL-1β secretion in LPS-primed hMACs stimulated with heme (reduced to 35.12±3.9; 184±30.4 pg/106 cells, respectively; 3h; P<0.05 compared to LPS/heme). Co-incubation of the LPS-primed cells with varying concentrations of heme, under the conditions employed, did not induce TNF-α production (data not shown), consistent with the hypothesis that IL-1β processing in heme-induced LPS-primed hMAC was mediated by inflammasome formation. Interestingly, qPCR showed that incubation of hMACs (1x106 cells/mL) with heme (50 µM) for 24h stimulated an approximately 10-fold increase (P<0.01) in the expression of the gene encoding, S100A8, another DAMP known to act as a TLR-4 agonist and to contribute to ischemia/reperfusion injury. Priming of hMACs with 1 µg/ml recombinant S100A8 for 3h and subsequent activation with heme (50 or 100 µM, 14h) significantly augmented the release of IL-1β (42.1±0.4 and 89.4±32.4 pg/106 cells for 50 and 100 µM heme, respectively; P<0.05), compared with S100A8 alone (20.6±3.5 pg/106 cells), without any modulation in TNF-α secretion (P>0.05). Using a model of acute intravascular hemolysis, we confirmed an association between heme release and S100A8 secretion, in vivo. Plasma heme levels increased significantly from 26.3±5 µM (i.v. saline control; N=4) to 87±18 µM in C57BL/6 mice at 1h after receiving i.v. water (150 µl; N=4, P=0.04). A concomitant increase in plasma S100A8 levels was also observed within 1h of the hemolytic stimulus (986±102 pg/mL, compared to 694.2±102 pg/ml in control mice; N=4, P=0.05), which was maintained for 3h (P<0.05). Thus, we present data to demonstrate that heme can induce IL-1β processing in LPS-primed human macrophages under in vitro conditions, probably via formation of the NLRP3/caspase-1 inflammasome machinery. In the absence of LPS, heme-stimulated hMACs can express the S100A8 DAMP; furthermore, a hemolytic stimulus induced mouse S100A8 production in vivo. As such, S100A8 may amplify heme-dependent inflammasome formation in an autocrine fashion, even under sterile conditions. Data provide new insights into the mechanisms by which heme may induce and potentiate inflammatory responses in hemolytic diseases, such as sickle cell disease, and suggest S100A8, together with heme, as potential therapeutic targets for reducing inflammation in these diseases. Disclosures Ferreira: Bayer AG: Research Funding. Almeida:Jassen & Cilag: Other: Currently employed with. Conran:Bayer AG: Research Funding.


Author(s):  
Nushrat Yasmin ◽  
Yoichi Ishitsuka ◽  
Yusei Yamada ◽  
Madoka Fukaura ◽  
Shuichi Nakahara ◽  
...  

1989 ◽  
Vol 257 (4) ◽  
pp. C787-C794 ◽  
Author(s):  
J. R. Mickelson ◽  
E. M. Gallant ◽  
W. E. Rempel ◽  
K. M. Johnson ◽  
L. A. Litterer ◽  
...  

Pigs heterozygous for the halothane-sensitivity gene exhibit a distinct phenotype with regard to both in vivo and in vitro muscle responses to halothane (E. M. Gallant, J. R. Mickelson, B. D. Roggow, S. K. Donaldson, C. F. Louis, and W. E. Rempel. Am. J. Physiol. 257 (Cell Physiol. 26): C781-C786, 1989). In this paper heavy sarcoplasmic reticulum (SR) preparations were isolated from the muscles of pigs of all three genotypes. The rate of calcium release from SR of pigs homozygous for the halothane-sensitivity gene was approximately twice that of SR from pigs homozygous for the normal allele. Furthermore, in the presence of 6 microM Ca2+, the binding of [3H]ryanodine to SR isolated from the homozygous halothane-sensitive pigs was of a higher affinity than was the binding to SR isolated from the homozygous normal pigs (Kd = 70-90 vs. 265 nM, respectively). The SR from pigs heterozygous for the halothane-sensitivity gene, however, demonstrated intermediate values for the rate of calcium release and the affinity for [3H]ryanodine (Kd = 192 nM). Thus the alterations in heavy SR calcium release and [3H]ryanodine binding in the pigs containing one copy of the halothane-sensitivity gene demonstrate a distinct heterozygote phenotype. These data also suggest that the protein product of this gene is closely associated with, and perhaps identical to, the SR calcium release channel-ryanodine receptor protein.


2021 ◽  
Vol 15 ◽  
Author(s):  
Malgorzata Wiweger ◽  
Lukasz Majewski ◽  
Dobrochna Adamek-Urbanska ◽  
Iga Wasilewska ◽  
Jacek Kuznicki

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2–/– larvae exhibited stronger Nile blue staining. The npc2–/– larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2–/– zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.


2020 ◽  
Author(s):  
Dario Carradori ◽  
Hsintsung Chen ◽  
Beat Werner ◽  
Aagam Shah ◽  
Chiara Leonardi ◽  
...  

AbstractNiemann-Pick Disease Type C (NPC) is a severe neurovisceral disorder that is pathophysiologically characterized by intracellular transport abnormalities leading to cytoplasmic accumulation of lipids such as cholesterol and multiple sphingolipids, including sphingosine. The compound 2-hydroxypropyl-β-cyclodextrin (HPβCD) is a compound with high cholesterol complexation capacity and is currently under clinical investigation for the treatment of NPC. However, due to its short blood half-life, high doses are required to produce a therapeutic effect. It has been reported in mice that HPβCD’s circulation time and efficacy can be improved by increasing its size via polymerization, but the biodegradable nature of these systems did not allow the contribution of the macromolecule to the activity to be determined. In this work, stable forms of polymerized HPβCD were generated (via epichlorohydrin crosslinking) to investigate their in vitro mechanisms of action and in vivo effects. Crosslinked CDs (8-312 kDa) displayed a 10-fold greater complexation capacity towards cholesterol than monomeric HPβCD but were taken up by cells to a lower extent (in a size-dependent fashion), resulting in an overall comparable in vitro effect on intracellular cholesterol accumulation that was dependent on cholesterol complexation. When tested in vivo, the crosslinked 19.3 kDa HPβCD exhibited a longer terminal half-life than the monomeric HPβCD. However, it did not increase the life span of Npc1 mice, possibly due to reduced organ penetration and brain diffusion consequence of its large molecular weight. This could be circumvented by the application of magnetic resonance imaging-guided low intensity-pulsed focused ultrasound (MRIg-FUS), which increased the brain penetration of the CD. In conclusion, stable forms of polymerized HPβCD constitute valuable tools to elucidate CDs’ mechanism of action. Moreover, the use of MRIg-FUS to maximize CDs tissue penetration warrants further investigation, as it may be key to harnessing CDs full therapeutic potential in the treatment of NPC.Graphical abstractThe 2-hydroxypropyl-β-cyclodextrin (HPβCD) is a well-established pharmaceutical excipient that can complex cholesterol and is currently under clinical investigation to treat Niemann-Pick Disease Type C (NPC). However, high doses of the drug are needed to achieve a therapeutic effect. Using stable and long circulating crosslinked HPβCDs, this study attempts to further understand the mechanisms behind CDs’ activity.


Sign in / Sign up

Export Citation Format

Share Document