2-amino-2,5-anhydro-2-deoxy-DL-ribitol: an amino sugar derivative having nitrogen in the ring

1974 ◽  
Vol 36 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Vasudewan Nair ◽  
Reed H. Walsh
Keyword(s):  
2013 ◽  
Vol 25 (6) ◽  
pp. 3014-3018
Author(s):  
M.B. Abdul Rahman ◽  
D. Krishnan ◽  
Md. Jelas Haron ◽  
B.A. Tejo ◽  
E. Abdulmalek ◽  
...  

2020 ◽  
Vol 57 (3) ◽  
pp. 265-272
Author(s):  
Priya S. Singh ◽  
Aizaz Shaikh ◽  
Aditi Deshmukh ◽  
Amit P. Pratap

2021 ◽  
Vol 11 (13) ◽  
pp. 5788
Author(s):  
Dominic Kwadwo Anning ◽  
Zhilong Li ◽  
Huizhen Qiu ◽  
Delei Deng ◽  
Chunhong Zhang ◽  
...  

Amino sugars are key microbial biomarkers for determining the contribution of microbial residues in soil organic matter (SOM). However, it remains largely unclear as to what extent inorganic nitrogen (N) fertilization can lead to the significant degradation of SOM in alkaline agricultural soils. A six-year field experiment was conducted from 2013 to 2018 to evaluate the effects of chronic N enrichment on microbial residues, amino sugars, and soil biochemical properties under four nitrogen (urea, 46% N) fertilization scenarios: 0 (no-N, control), 75 (low-N), 225 (medium-N), and 375 (high-N) kg N ha−1. The results showed that chronic N enrichment stimulated microbial residues and amino sugar accumulation over time. The medium-N treatment increased the concentration of muramic acid (15.77%), glucosamine (13.55%), galactosamine (18.84%), bacterial residues (16.88%), fungal residues (11.31%), and total microbial residues (12.57%) compared to the control in 2018; however, these concentrations were comparable to the high-N treatment concentrations. The ratio of glucosamine to galactosamine and of glucosamine to muramic acid decreased over time due to a larger increase in bacterial residues as compared to fungal residues. Microbial biomass, soil organic carbon, and aboveground plant biomass positively correlated with microbial residues and amino sugar components. Chronic N enrichment improved the soil biochemical properties and aboveground plant biomass, which stimulated microbial residues and amino sugar accumulation over time.


1986 ◽  
Vol 18 (6) ◽  
pp. 479-485 ◽  
Author(s):  
Yoshiyuki Koyama ◽  
Akira Yoshida ◽  
Keisuke Kurita
Keyword(s):  

1980 ◽  
Vol 60 (3) ◽  
pp. 541-548 ◽  
Author(s):  
M. SCHNITZER ◽  
D. A. HINDLE

Three humic and one fulvic acid were degraded by mild chemical oxidation with peracetic acid, with special emphasis on the effects of this type of oxidation on N-containing components. The different types of N that were considered were NH4+-N, amino acid-N, amino sugar-N, NO2−-N + NO3−-N, and by difference from total N, "unknown" N. The behaviour toward mild chemical oxidation of all four preparations was essentially similar: there were decreases in mino acid-N, amino sugar-N and "unknown" N, increases in NH4+-N, NO2−-N + NO3−-N with one material, and in N-gases. The "unknown" N was not inert. Between 16.6 and 59.1% of the latter appeared to be converted, as a result of mild chemical oxidation, to NH3 and N-gases which were expelled from the systems. The results presented provide an insight into what happens to N-containing humic components as a result of mild oxidation.


Sign in / Sign up

Export Citation Format

Share Document