scholarly journals Age-dependent increase in c-fos activity and cyclin A expression in vascular smooth muscle cells A potential link between aging, smooth muscle cell proliferation and atherosclerosis

2000 ◽  
Vol 45 (4) ◽  
pp. 1026-1034 ◽  
Author(s):  
A Rivard
1990 ◽  
Vol 258 (1) ◽  
pp. C46-C53 ◽  
Author(s):  
R. Zaragoza ◽  
K. M. Battle-Tracy ◽  
N. E. Owen

Vascular smooth muscle cell proliferation has been shown to be an important factor in atheromatous plaque formation, hypertrophy associated with essential hypertension, and failure of balloon angioplasty procedures. Investigators have shown that a number of different agents stimulate vascular smooth muscle cell proliferation, including epidermal growth factor, platelet-derived growth factor, angiotensin II, and catecholamines. Previously, we have demonstrated that these agents also cause immediate changes in ion transport and second messenger generation in vascular smooth muscle cells. We have proposed that these immediate changes may be linked to each other and to cell proliferation. In contrast to the many agents that have been shown to stimulate vascular smooth muscle cell proliferation, only a few agents (e.g., heparin sodium or transforming growth factor-beta) have been shown to inhibit vascular smooth muscle cell proliferation. In the present study we have investigated whether heparin inhibits serum- or growth factor-stimulated changes in ion transport and second messenger generation in vascular smooth muscle cells. We found that heparin inhibits serum- or growth factor-stimulated Na(+)-H+ exchange in a concentration-dependent manner that is not dependent on the ability of heparin to function as an anticoagulant agent. In addition, other glycosaminoglycans were not found to be inhibitory, and the inhibitory effects of heparin were discovered to be limited to vascular smooth muscle cells. Heparin does not appear to be acting by binding to growth factors, or by directly inhibiting the Na(+)-H+ exchange protein. However, heparin did inhibit serum- or growth factor-stimulated inositol trisphosphate release and calcium mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.


2018 ◽  
Author(s):  
Thomas R. Whitesell ◽  
Paul Chrystal ◽  
Jae-Ryeon Ryu ◽  
Nicole Munsie ◽  
Ann Grosse ◽  
...  

AbstractDespite the critical role of vascular mural cells (smooth muscle cells and pericytes) in supporting the endothelium of blood vessels, we know little of their early morphogenesis and differentiation. foxc1b:EGFP expressing cells in zebrafish associate with the vascular endothelium (kdrl) and co-express a smooth muscle marker (acta2), but not a pericyte marker (pdgfrβ). The expression of foxc1b in early peri-endothelial mesenchymal cells allows us to follow the morphogenesis of mesenchyme into acta2 expressing vascular smooth muscle cells. We show that mural cells expressing different markers associate with vessels of different diameters, depending on their embryonic location and developmental timing, suggesting marker expression is predictive of functional differences. We identify gene expression signatures for an enriched vascular smooth muscle cell population (foxc1b + acta2) and all smooth muscle (acta2) using fluorescence-activated cell sorting and RNA-Seq. Finally, we demonstrate that progressive loss of foxc1a/foxc1b results in decreased smooth muscle cell coverage. Together, our data highlight the early cellular dynamics and transcriptome profiles of smooth muscle cells in vivo, using foxc1b as a unique tool to probe vascular smooth muscle cell differentiation.Summary StatementTracing the morphogenesis and transcriptome of early vascular smooth muscle cells using foxc1b


2000 ◽  
Vol 113 (11) ◽  
pp. 2055-2064
Author(s):  
E. Stringa ◽  
V. Knauper ◽  
G. Murphy ◽  
J. Gavrilovic

Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix.


2002 ◽  
Vol 282 (1) ◽  
pp. R156-R165 ◽  
Author(s):  
Geoffrey E. Woodard ◽  
Juan A. Rosado ◽  
John Brown

C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family mainly distributed in the central nervous system. CNP is also produced and secreted by the endothelium and inhibits vascular smooth muscle cell proliferation. We have reported that endothelial damage stimulates only transiently vascular smooth muscle cell proliferation in arteries due to the development of an autocrine neointimal system for CNP that modulates neointimal growth. The present study demonstrates the production and secretion of CNP in rat vascular smooth muscle cells in the absence of endothelium. In addition, these cells express atrial natriuretic peptide (ANP) and the natriuretic peptide receptors A, B, and C. The production and secretion of CNP in vascular smooth muscle cells is stimulated by transforming growth factor-β, whereas basic fibroblast growth factor plays an inhibitory role. These data show that ANP and mainly CNP are coexpressed with the natriuretic peptide receptors in rat vascular smooth muscle cells. This provides evidence for a vascular natriuretic peptide autocrine system of physiological relevance in these cells.


Sign in / Sign up

Export Citation Format

Share Document