Cementitious properties of ladle slag fines under autoclave curing conditions

2003 ◽  
Vol 33 (11) ◽  
pp. 1851-1856 ◽  
Author(s):  
Caijun Shi ◽  
Shunfu Hu
2014 ◽  
Vol 20 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Abdulrahman Alhozaimy ◽  
Omer Abdalla Alawad ◽  
Mohd Saleh Jaafar ◽  
Abdulaziz Al-Negheimish ◽  
Jamaloddin Noorzaei

The process of Portland cement production is associated with high consumption of energy and resources. Therefore, there is a need to replace the Portland cement with environmental friendly materials. This study was conducted to determine the feasibility of using ground dune sand as cement replacement materials under different curing conditions. Portland cement was replaced by ground dune sand at five levels of replacement (0–40% by weight). The compressive strength of mortar under standard and autoclave curing conditions and the influence of different autoclave temperatures and durations were investigated. The microstructure of selected mixtures was analyzed by XRD and SEM. Results showed that the compressive strength under the standard curing decreased as the level of replacement increased. However, under autoclave curing compressive strength increased as the content of ground dune sand increased. XRD and SEM revealed the absence of calcium hydroxide and the formation of secondary calcium silicate hydrate. The improvement of compressive strength and the absence of calcium hydroxide under autoclave curing indicated that the pozzolanic reaction between silica of dune sand and calcium hydroxide occurred.


2012 ◽  
Vol 2 (3) ◽  
pp. 178-180 ◽  
Author(s):  
Shankar H Sanni ◽  
◽  
Dr. R. B. Khadiranaikar Dr. R. B. Khadiranaikar

2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 316
Author(s):  
Cong Wang ◽  
Yu-Chen Wei ◽  
Ho-Kun Sung ◽  
Alok Kumar ◽  
Zhong-Liang Zhou ◽  
...  

High density electrocorticography (ECoG)-based microelectrode arrays (MEAs) are fabricated to timely record the neural activities to provide the fundamental understanding in neuroscience and biomedical engineering. This paper aims to introduce a device-based concept and wafer-scale fabrication process for MEAs. Flexible and biocompatible polyimide is applied on MEAs to bear all possible stress and strain. Detailed fabrication key techniques, including surface treatment, polyimide stability measurement, evaporation process, and curing conditions, have been discussed thoroughly. Moreover, the fabricated polyimide-based MEAs are surface-mounted on well-packaged printed circuit boards (PCBs) via a slot-type connector without any additional wire bonding to make the signal recording process easier. An absence seizure was recorded during the in vivo test, which shows the availability of signal recording based on the presented MEAs. The proposed MEAs could be remained at the skull, while the connector and PCBs can be disassembled apart. Therefore, the testing sample will get less suffering. To verify the robustness of the fabricated MEAs, the impedance properties were characterized using electrochemical impedance spectroscopy. The measured results indicate an average impedance of 12.3 ± 0.675 kΩ at 1 kHz. In total, 10 groups of MEAs were sample tested, and over 90% of the total 60 channels per 1-MEAs operated efficiently.


Sign in / Sign up

Export Citation Format

Share Document