Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250–1950 bar)

1997 ◽  
Vol 138 (1-2) ◽  
pp. 81-92 ◽  
Author(s):  
Nathalie Jendrzejewski ◽  
Thomas W. Trull ◽  
Françoise Pineau ◽  
Marc Javoy
2020 ◽  
Vol 105 (11) ◽  
pp. 1662-1671
Author(s):  
Anastassia Y. Borisova ◽  
Ilya N. Bindeman ◽  
Michael J. Toplis ◽  
Nail R. Zagrtdenov ◽  
Jérémy Guignard ◽  
...  

Abstract Zircon (ZrSiO4) is the most frequently used geochronometer of terrestrial and extraterrestrial processes. To shed light on question of zircon survival in the Earth's shallow asthenosphere, high-temperature experiments of zircon dissolution in natural mid-ocean ridge basaltic (MORB) and synthetic haplobasaltic melts have been performed at temperatures of 1250–1300 °C and pressures from 0.1 MPa to 0.7 GPa. Zirconium measurements were made in situ by electron probe microanalyses (EPMA) at high current. Taking into account secondary fluorescence effects in zircon-glass pairs during EPMA, a zirconium diffusion coefficient of 2.87E-08 cm2/s was determined at 1300 °C and 0.5 GPa. When applied to the question of zircon survival in asthenospheric melts of tholeiitic basalt composition, the data are used to infer that typical 100 mm zircon crystals dissolve rapidly (~10 h) and congruently upon reaction with basaltic melt at pressures of 0.2–0.7 GPa. We observed incongruent (to crystal ZrO2 and SiO2 in melt) dissolution of zircon in natural mid-ocean ridge the basaltic melt at low pressures <0.2 GPa and in the haplobasaltic melt at 0.7 GPa pressure. Our experimental data raise questions about the origin of zircon crystals in mafic and ultramafic rocks, in particular, in shallow oceanic asthenosphere and deep lithosphere, as well as the meaning of the zircon-based ages estimated from these minerals. The origin of zircon in shallow (ultra-) mafic chambers is likely related to the crystallization of intercumulus liquid. Large zircon megacrysts in kimberlites, peridotites, alkali basalts, and carbonatite magmas suggest fast transport and short interaction durations between zircon and melt. The origin of zircon megacrysts is likely related to metasomatic addition of Zr into the mantle as an episode of mantle melting should eliminate them on geologically short timescales.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingdong Zhang ◽  
Yuan Li

AbstractPlatinum group elements are invaluable tracers for planetary accretion and differentiation and the formation of PGE sulfide deposits. Previous laboratory determinations of the sulfide liquid–basaltic melt partition coefficients of PGE ($${D}_{PGE}^{SL/SM}$$ D P G E S L / S M ) yielded values of 102–109, and values of >105 have been accepted by the geochemical and cosmochemical society. Here we perform measurements of $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M at 1 GPa and 1,400 °C, and find that $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M increase respectively from 3,500 to 3.5 × 105 and 1,800 to 7 × 105, as the Pt and Pd concentration in the sulfide liquid increases from 60 to 21,000 ppm and 26 to 7,000 ppm, respectively, implying non-Henrian behavior of the Pt and Pd partitioning. The use of $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M values of 2,000–6,000 well explains the Pt and Pd systematics of Earth’s mantle peridotites and mid-ocean ridge basalts. Our findings suggest that the behavior of PGE needs to be reevaluated when using them to trace planetary magmatic processes.


2019 ◽  
Author(s):  
Yung Ping Lee ◽  
◽  
Jonathan E. Snow ◽  
Yongjun Gao
Keyword(s):  

2021 ◽  
Vol 566 ◽  
pp. 116951
Author(s):  
Suzanne K. Birner ◽  
Elizabeth Cottrell ◽  
Jessica M. Warren ◽  
Katherine A. Kelley ◽  
Fred A. Davis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Frances M. Deegan ◽  
Martin J. Whitehouse ◽  
Valentin R. Troll ◽  
Harri Geiger ◽  
Heejin Jeon ◽  
...  

AbstractMagma plumbing systems underlying subduction zone volcanoes extend from the mantle through the overlying crust and facilitate protracted fractional crystallisation, assimilation, and mixing, which frequently obscures a clear view of mantle source compositions. In order to see through this crustal noise, we present intracrystal Secondary Ion Mass Spectrometry (SIMS) δ18O values in clinopyroxene from Merapi, Kelut, Batur, and Agung volcanoes in the Sunda arc, Indonesia, under which the thickness of the crust decreases from ca. 30 km at Merapi to ≤20 km at Agung. Here we show that mean clinopyroxene δ18O values decrease concomitantly with crustal thickness and that lavas from Agung possess mantle-like He-Sr-Nd-Pb isotope ratios and clinopyroxene mean equilibrium melt δ18O values of 5.7 ‰ (±0.2 1 SD) indistinguishable from the δ18O range for Mid Ocean Ridge Basalt (MORB). The oxygen isotope composition of the mantle underlying the East Sunda Arc is therefore largely unaffected by subduction-driven metasomatism and may thus represent a sediment-poor arc end-member.


Sign in / Sign up

Export Citation Format

Share Document