Investment casting technique for the formation of metal matrix composite bodies and products produced thereby

Composites ◽  
1995 ◽  
Vol 26 (1) ◽  
pp. 77
2011 ◽  
Vol 264-265 ◽  
pp. 323-328 ◽  
Author(s):  
Taufik ◽  
Shamsuddin Sulaiman ◽  
T.A. Abdullah ◽  
Sivarao

Metal Matrix Composite (MMC) is produced normally by melting the matrix material in a vessel and the molten metal is stirred systematically to form a vortex, and then the reinforcement particles are introduced through the side of vortex formed. However, this approach has disadvantages, mainly arising from the particle addition and the stirring method. There is certainly local solidification of the melt induced by the particles during particle addition. This condition increases the viscosity of the slurry and appears as air pockets between the particles. Moreover, the rate of particle addition needs to be slowed down particularly when the volume fraction of the particles to used increases. This study proposes the new methodology of producing cast MMC by investment casting. Deformations of the die-wax and shell alloy systems are considered in a coupled manner, but the coupled deformation of the wax-shell system is not included. Therefore, this study presents the tasks pertaining to metal matrix composites and their interactions. As a result, the work on wax and wax-die interactions is discussed. This study presents the use of computer programs for determining the wax pattern dimensions based on three-dimensional finite-element simulations. The model for coupled thermal and mechanical analysis is developed by ProCAST. The wax model is described. The following factors are considered in the analysis: (1) the restraint due to geometrical features in the metal die; and (2) process parameters such as dwell time, die/platen temperature, injection pressure, and injection temperature.


2014 ◽  
Vol 541-542 ◽  
pp. 263-267
Author(s):  
S. Baskaran ◽  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
R. Venkatraman ◽  
Muthukannan Durai Selvam

The AA7075-4%TiC metal matrix composite produced through in-situ casting technique was hot extruded and subjected to annealing at 415°C for 150 minutes. Another set of hot extruded AA7075-4%TiC metal matrix composite was heat treated to T6 condition. Dry sliding wear test was conducted with different sliding speeds and loads for both annealed and T6 conditioned composites to compare their wear behaviour. It was observed that irrespective of the heat treatment conditions, the depth of wear, decreases with increasing sliding velocity for all the loads tested and increases with increasing load for all the sliding velocities.


2011 ◽  
Vol 264-265 ◽  
pp. 403-408 ◽  
Author(s):  
Taufik ◽  
Shamsuddin Sulaiman ◽  
T.A. Abdullah ◽  
Sivarao

Compressor is a part of turbocharger approaches that utilize the exhaust gas of an automobile to drive the compression device. The purpose of turbocharging is to increase the intake pressure and the amount of air into the combustion chamber to improve the efficiency of the engine. Compressor impeller determines the service life of the turbocharger. This paper proposes the new methodology of producing the compressor impeller using Metal Matrix Composite (MMC) material by investment casting. In general, this study presents the tasks pertaining to metal matrix composites and their interactions in designing of compressor impeller. This study presents the use of genetic algorithm (GA) and computer programs for designing a new compressor and determined the wax pattern dimensions based on three-dimensional finite-element simulations as a preliminary study by using investment casting method. The model of thermal and mechanical analysis was developed by ANSYS. As the results, the simulation model was generated and it could be used for improving the design of turbine-compressor assembly through the bottom geometry changes of the compressor.


2017 ◽  
Vol 13 (3) ◽  
pp. 91-99 ◽  
Author(s):  
Hussain J. M Alalkawi ◽  
Aseel A. Hamdany ◽  
Abbas Ahmed Alasadi

Abstract      In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue life of 10wt% nanocomposite was found to be increased by 33.37% and 39.58% for low-high and high-low loading sequences, respectively, compared to the metal-matrix cumulative life. Keywords: Al2O3 nanoparticles, AA6061/10wt%, constant and cumulative fatigue, MMCs.


Author(s):  
Madan Kumar K.N. ◽  
G. M. Satyanarayana

Aluminium based composite are getting a vast scope nowadays because of its properties and availability. In the present work, fly ash and AL2O3 reinforced composite are prepared using stir casting technique for varying wt.% (fly ash 3% and AL2O3 3%, 6% & 9%). Hardness and tensile properties were determined, with the addition of reinforcement the properties are improved compared to the parent metal alone. Based on the evaluation 6% AL2O3 and 3%fly ash gives a better result as compared to other composition.


Sign in / Sign up

Export Citation Format

Share Document