In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation

2002 ◽  
Vol 450 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Roland Baron ◽  
Yannis Tsouderos
2021 ◽  
Vol 15 (6) ◽  
pp. 594-603
Author(s):  
V. A. Pozdina ◽  
U. V. Zvedeninova ◽  
M. V. Ulitko ◽  
I. G. Danilova ◽  
M. T. Abidov

2020 ◽  
pp. annrheumdis-2020-217470
Author(s):  
Grant S Schulert ◽  
Alex V Pickering ◽  
Thuy Do ◽  
Sanjeev Dhakal ◽  
Ndate Fall ◽  
...  

ObjectivesSystemic juvenile idiopathic arthritis (SJIA) confers high risk for macrophage activation syndrome (MAS), a life-threatening cytokine storm driven by interferon (IFN)-γ. SJIA monocytes display IFN-γ hyper-responsiveness, but the molecular basis of this remains unclear. The objective of this study is to identify circulating monocyte and bone marrow macrophage (BMM) polarisation phenotypes in SJIA including molecular features contributing to IFN response.MethodsBulk RNA-seq was performed on peripheral blood monocytes (n=26 SJIA patients) and single cell (sc) RNA-seq was performed on BMM (n=1). Cultured macrophages were used to define consequences of tripartite motif containing 8 (TRIM8) knockdown on IFN-γ signalling.ResultsBulk RNA-seq of SJIA monocytes revealed marked transcriptional changes in patients with elevated ferritin levels. We identified substantial overlap with multiple polarisation states but little evidence of IFN-induced signature. Interestingly, among the most highly upregulated genes was TRIM8, a positive regulator of IFN-γ signalling. In contrast to PBMC from SJIA patients without MAS, scRNA-seq of BMM from a patient with SJIA and MAS identified distinct subpopulations of BMM with altered transcriptomes, including upregulated IFN-γ response pathways. These BMM also showed significantly increased expression of TRIM8. In vitro knockdown of TRIM8 in macrophages significantly reduced IFN-γ responsiveness.ConclusionsMacrophages with an ‘IFN-γ response’ phenotype and TRIM8 overexpression were expanded in the bone marrow from an MAS patient. TRIM8 is also upregulated in SJIA monocytes, and augments macrophage IFN-γ response in vitro, providing both a candidate molecular mechanism and potential therapeutic target for monocyte hyper-responsiveness to IFNγ in cytokine storms including MAS.


1994 ◽  
Vol 29 (3) ◽  
pp. 631-634 ◽  
Author(s):  
Masako Nose ◽  
Yoshiro Aoki ◽  
Yoshiko Kawase ◽  
Gen Suzuki ◽  
Makoto Akashi ◽  
...  

2004 ◽  
Vol 83 (2) ◽  
pp. 134-138 ◽  
Author(s):  
S. Keila ◽  
C.E. Nemcovsky ◽  
O. Moses ◽  
Z. Artzi ◽  
M. Weinreb

Emdogain® (EMD), a formulation of Enamel Matrix Proteins (EMP), is used clinically for periodontal regeneration, where it stimulates cementum formation and promotes gingival healing. In this study, we investigated the in vitro effects of EMD on rat bone marrow stromal cells (BMSC) and gingival fibroblasts (GF). EMD (at 25 μg/mL) increased the osteogenic capacity of bone marrow, as evidenced by ~ three-fold increase in BMSC cell number and ~ two-fold increase in alkaline phosphatase (ALP) activity and mineralized nodule formation. The presence of EMD in the initial stages (first 48 hrs) of the culture was crucial for this effect. In contrast, EMD did not induce osteoblastic differentiation of GF (evidenced by lack of mineralization or ALP activity) but increased up to two-fold both their number and the amount of matrix produced. These in vitro data on BMSC and GF could explain the promotive effect of EMD on bone formation and connective tissue regeneration, respectively.


2021 ◽  
Vol 41 ◽  
pp. 269-315
Author(s):  
J Vun ◽  
◽  
M Panteli ◽  
E Jones ◽  
PV Giannoudis

Platelet products (PP) and bone-marrow aspirate are popular sources of osteoinductive signalling molecules and osteogenic bone marrow mesenchymal stromal cells (BM-MSCs) used in the treatment of impaired bone healing. However, the combined use of PP and BM-MSCs in clinical studies has reported mixed results. Understanding the cellular and molecular interactions between PP and BM-MSCs plays the important role of guiding future research and clinical application. This systematic review investigates the effects of PP on the biophysiological functions of BM-MSCs in in vitro human studies, including (i) proliferation, (ii) migration, (iii) differentiation, (iv) growth factor/cytokine/protein expression, (v) immunomodulation, (vi) chemotactic effect on haematopoietic stem cells, (vii) response to apoptotic stress, and (viii) gene expression. In vitro studies in human have demonstrated the multi-faceted ‘priming effect’ of PP on the biophysiological functions of BM-MSCs. PP has been shown to improve proliferation, migration, osteogenic differentiation, reaction to apoptotic stress as well as immunomodulatory, pro-angiogenic and pro-inflammatory capacities of BM-MSCs. Several factors are highlighted that restrict the transferability of these findings into clinical practice. Therefore, more collaborative in vitro research in humans modelled to reflect clinical practice is required to better understand the effects of PP exposure on the biophysiological function(s) of BM-MSCs in human.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2813-2813
Author(s):  
Karthik Ramasamy ◽  
Lee Macpherson ◽  
Ghulam J Mufti ◽  
Stephen Schey ◽  
Yolanda Calle

Abstract Abstract 2813 Poster Board II-789 Osteoclast, in addition to eroding the bone resulting in lytic lesions, enhances plasma cell proliferation and survival via direct cell to cell contact. Src family protein tyrosine kinases (SFKs) and c-Abl kinase play important role downstream of integrin adhesion receptors, and regulate the cytoskeletal organisation, cell motility and gene expression in response to cell adhesion. We hypothesised targeting SFKs and Abl kinase with the small molecule tyrosine kinase inhibitor Dasatinib has potential to reduce adhesion of plasma cells to ECM proteins in the bone marrow and modify the microenvironment by inhibiting osteoclast function, specifically bone resorption. As a result, myeloma cells could be sensitised to drugs with cytotoxic properties such as dexamethasone. Osteoclasts were generated from primary bone marrow mononuclear cells of myeloma and MGUS patients (n=10). Using Immunofluorescence, we found that Dasatinib 100nM but not dexamethasone inhibited osteoclastogenesis and disrupted the actin cytoskeletal organisation with actin clusters formed in the periphery of the cell. There was absence of actin ring formation at sealing zones which is essential for bone resorption. This effect consistently led to impaired osteoclast function, evidenced by fewer resorption pits formed on rabbit dentine slices on toluidine blue staining. Experiments were repeated ≥ 3 times. In plasma cells, the combination of dexamethasone and Dasatinib synergistically (Calcusyn software) inhibited cell proliferation at clinically relevant concentrations and induced apoptosis of human and murine myeloma cell lines alone and in cocultures with human stromal cells ( p<.001). Dasatinib alone at 200 nM concentration does not inhibit plasma cell proliferation with maximal serum concentration achieved in Phase I CML trials being 180nM. Additionally, Dasatinib and Dexamethasone in combination inhibited secretion of IL-6 but not MIL -1 alpha in stromal cell cocultures. Dasatinib but not dexamethasone significantly inhibited adhesion of myeloma cell lines on Fibronectin despite integrin activation with Magnesium EGTA. This effect was mediated through down regulation of both Src and Abl phosphorylation. Both Dasatinib and Dexamethasone inhibited adhesion of PC on stromal cells and osteoclasts. Taken together, our in vitro results suggest that Dasatinib and dexamethasone could be an effective therapeutic combination with Dasatinib impairing adhesion of plasma cells to the bone marrow microenvironment as well as osteoclast function and resultant bone disease thereby sensitising myeloma cells to the cytotoxic effect of dexamethasone. We have also established that the combination of Dasatinib 75mg/kg and dexamethasone 1mg/kg is not toxic to C57BL/KaLwRij mice. The anti-myeloma efficacy of these drugs alone and in combination is being currently studied. The combination of Dasatinib 100 mg OD days 1-28 and Dexamethasone 20mg OD on Day 1-4, 15-18 has resulted in a partial response (EBMT criteria) in 2 multiply relapsed and steroid refractory myeloma patients without significant toxicity. Serum calcium levels fell commensurate with disease response and we are currently performing experiments to analyse the effect of the drug combination on osteoclast function in vivo. These findings warrant exploring this drug combination in steroid resistant myeloma and patients with extensive skeletal disease prospectively in a phase I/II trial. Disclosures: Off Label Use: Dasatinib is not licensed for Myeloma.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 517-517 ◽  
Author(s):  
Yongzheng He ◽  
Karl Staser ◽  
Steven D Rhodes ◽  
Xiaohua Wu ◽  
Ping Zhang ◽  
...  

Abstract Abstract 517 Extracellular signal-regulated kinase (ERK 1 and 2) are widely expressed and are involved in the regulation of meiosis, mitosis, and postmitotic functions in multiple cell lineages, including T cells, B cells and osteoblasts. Macrophages are capable of differentiating into osteoclasts, which resorb bone. Abnormal osteoclast development and functions underlie certain diseases, especially skeletal defects. Altered ERK1/2 signaling has been found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, polycystic kidney disease and serious developmental disorders such as cardio-facio-cutaneous syndrome. These clinical findings suggest the importance of the ERK MAPK pathway in human skeletal development. In the present study, we examined the consequence of Erk1 and Erk2 disruption in modulating macrophage development in the murine system. We found that deletion of Erk1 reduced macrophage progenitor numbers. Erk1−/− bone marrow mononuclear cells (BMMNCs) had significant reduction in osteoclast formation as compared to wildtype BMMNCs. In addition, Erk1−/− macrophages; the osteoclast progenitors, had a two-three fold reduction in migration and a two-fold reduction in αv ß3 mediated adhesion as compared to WT macrophages as evaluated by transwell and adhesion assay, respectively. These in vitro data demonstrate that Erk1 positively regulates macrophage differentiation into osteoclasts. To evaluate the impact of deficiency of Erk1 in vivo, we examined bone mineral density and trabecular microarchitecture in the distal femoral metaphysis by dual-energy X-ray absorptiometry (DEXA) with a Lunar Piximus densitometer and a high-resolution desktop microcomputed tomography imaging system (μCT-20; Scanco Medical AG, Basserdorf, Switzerland), respectively. Erk1−/− mice displayed elevated bone mineral density and increased trabecular bone formation as compared to WT mice. Histomorphometric analysis indicated that the Erk1−/− femur had significant reduction in osteoclast numbers as determined by tartrate resistant acid phosphatase staining, an osteoclast specific staining, as compared to femur of wildtype and Erk2−/− mice. Most importantly, Erk1−/− plasma had reduced C-terminal telopeptide of type I collagen, indicating less bone resorption in vivo. These data suggest that the impaired macrophage differentiation and osteoclast bone resorptive activity play an important role in increased bone mass in Erk1−/− mice. Finally, to verify that the macrophage-osteoclast lineage is a key cell lineage for the phenotypic changes in vivo in Erk1−/− mice, we performed bone marrow transplantation. WT mice reconstituted long-term with Erk1−/− hematopoietic stem cells demonstrated increased bone mineral density as compared to WT and Erk2−/− stem cell recipients, implicating marrow autonomous, Erk1-dependent macrophage differentiation and osteoclast bioactivity in vivo. Collectively, our in vitro and in vivo data demonstrate isoform-specific Erk function in macrophage while providing rationale for the development of a specific inhibitor for Erk1 that might be used for the treatment of dysplastic and erosive bone diseases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1972 ◽  
Vol 40 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Martin J. Cline ◽  
Margaret A. Sumner

Abstract Mouse bone marrow cells were cultured in vitro under conditions that allowed little granulopoiesis but permitted proliferation of mononuclear phagocytes. During 10 days’ culture, the population gradually shifted from a preponderance of undifferentiated blast cells and promonocytes to macrophages. Cells up to the A (immature) macrophage stage were capable of DNA synthesis and mitosis. B (mature) macrophages were nondividing. Blast cells were not phagocytic and lacked glass adhesiveness and demonstrable surface receptors for IgG immunoglobulin. With progressive cellular maturation, peroxidase activity disappeared after the monocyte stage. Glass adhesiveness, phagocytic ability, and surface receptors for immunoglobulins appeared to increase with cell maturation from the promonocyte through the macrophage stage of development.


Sign in / Sign up

Export Citation Format

Share Document