scholarly journals Alternative splicing within the TGF-β type I receptor gene (ALK-5) generates two major functional isoforms in vascular smooth muscle cells

FEBS Letters ◽  
2000 ◽  
Vol 467 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Alex Agrotis ◽  
Melanie Condron ◽  
Alex Bobik
Circulation ◽  
2000 ◽  
Vol 102 (15) ◽  
pp. 1828-1833 ◽  
Author(s):  
Georg Nickenig ◽  
Kerstin Strehlow ◽  
Sven Wassmann ◽  
Anselm T. Bäumer ◽  
Katja Albory ◽  
...  

2000 ◽  
Vol 113 (11) ◽  
pp. 2055-2064
Author(s):  
E. Stringa ◽  
V. Knauper ◽  
G. Murphy ◽  
J. Gavrilovic

Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document