Sa1517 Deferasirox, a Newly Developed Oral Iron Chelator, Showing Antiproliferative Activity Against Pancreatic Cancer In Vitro and In Vivo

2016 ◽  
Vol 150 (4) ◽  
pp. S329-S330
Author(s):  
Hirofumi Harima ◽  
Seiji Kaino ◽  
Shuhei Shinoda ◽  
Toshihiko Matsumoto ◽  
Koichi Fujisawa ◽  
...  
BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Hirofumi Harima ◽  
Seiji Kaino ◽  
Taro Takami ◽  
Shuhei Shinoda ◽  
Toshihiko Matsumoto ◽  
...  

Oncotarget ◽  
2018 ◽  
Vol 9 (47) ◽  
pp. 28434-28444 ◽  
Author(s):  
Shuhei Shinoda ◽  
Seiji Kaino ◽  
Shogo Amano ◽  
Hirofumi Harima ◽  
Toshihiko Matsumoto ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 2008-2013 ◽  
Author(s):  
O Shalev ◽  
T Repka ◽  
A Goldfarb ◽  
L Grinberg ◽  
A Abrahamov ◽  
...  

Red blood cell (RBC) membranes from patients with the thalassemic and sickle hemoglobinopathies carry abnormal deposits of iron presumed to mediate a variety of oxidative-induced membrane dysfunctions. We hypothesized that the oral iron chelator deferiprone (L1), which has an enhanced capacity to permeate cell membranes, might be useful in chelating these pathologic iron deposits from intact RBCs. We tested this hypothesis in vitro by incubating L1 with RBCs from 15 patients with thalassemia intermedia and 6 patients with sickle cell anemia. We found that removal of RBC membrane free iron by L1 increased both as a function of time of incubation and L1 concentration. Thus, increasing the time of incubation of thalassemic RBCs with 0.5 mmol/L L1 from 0.5 to 6 hours, enhanced removal of their membrane free iron from 18% +/- 9% to 96% +/- 4%. Dose-response studies showed that incubating thalassemic RBC for 2 hours with L1 concentrations ranging from 0.125 to 0.5 mmol/L resulted in removal of membrane free iron from 28% +/- 15% to 68% +/- 11%. Parallel studies with sickle RBCs showed a similar pattern in time and dose responses. Deferoxamine (DFO), on the other hand, was ineffective in chelating membrane free iron from either thalassemic or sickle RBCs regardless of dose (maximum, 0.333 mmol/L) or time of incubation (maximum, 24 hours). In vivo efficacy of L1 was shown in six thalassemic patients whose RBC membrane free iron decreased by 50% +/- 29% following a 2-week course of L1 at a daily dose of 25 mg/kg. As the dose of L1 was increased to 50 mg/kg/d (n = 5), and then to 75 mg/kg/d (n = 4), 67% +/- 14% and 79% +/- 11%, respectively, of their RBC membrane free iron was removed. L1 therapy-- both in vitro and in vivo--also significantly attenuated the malondialdehyde response of thalassemic RBC membranes to in vitro stimulation with peroxide. Remarkably, the heme content of RBC membranes from L1-treated thalassemic patients decreased by 28% +/- 10% during the 3-month study period. These results indicate that L1 can remove pathologic deposits of chelatable iron from thalassemic and sickle RBC membranes, a therapeutic potential not shared by DFO. Furthermore, membrane defects possibly mediated by catalytic iron, such as lipid peroxidation and hemichrome formation, may also be alleviated, at least in part, by L1.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
G Marchetti ◽  
K Silva ◽  
A Ruiz ◽  
I Sousa ◽  
S Tinti ◽  
...  

2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Pancreatology ◽  
2020 ◽  
Author(s):  
Lisi Peng ◽  
Lu Zhuang ◽  
Kun Lin ◽  
Yao Yao ◽  
Yang Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document