scholarly journals Geostatistical modeling of clay spatial distribution in siliciclastic rock samples using the plurigaussian simulation method

2013 ◽  
Vol 52 (3) ◽  
pp. 229-247 ◽  
Author(s):  
Javier Méndez-Venegas ◽  
Martín A. Díaz-Viera
Geoderma ◽  
2010 ◽  
Vol 159 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
M. Jason Todd ◽  
R. Richard Lowrance ◽  
Pierre Goovaerts ◽  
George Vellidis ◽  
Catherine M. Pringle

2019 ◽  
Vol 8 (1) ◽  
pp. 97-111
Author(s):  
Dorothea S. Macholdt ◽  
Jan-David Förster ◽  
Maren Müller ◽  
Bettina Weber ◽  
Michael Kappl ◽  
...  

Abstract. The spatial distribution of transition metal valence states is of broad interest in the microanalysis of geological and environmental samples. An example is rock varnish, a natural manganese (Mn)-rich rock coating, whose genesis mechanism remains a subject of scientific debate. We conducted scanning transmission X-ray microscopy with near-edge X-ray absorption fine-structure spectroscopy (STXM-NEXAFS) measurements of the abundance and spatial distribution of different Mn oxidation states within the nano- to micrometer thick varnish crusts. Such microanalytical measurements of thin and hard rock crusts require sample preparation with minimal contamination risk. Focused ion beam (FIB) slicing was used to obtain ∼100–1000 nm thin wedge-shaped slices of the samples for STXM, using standard parameters. However, while this preparation is suitable for investigating element distributions and structures in rock samples, we observed artifactual modifications of the Mn oxidation states at the surfaces of the FIB slices. Our results suggest that the preparation causes a reduction of Mn4+ to Mn2+. We draw attention to this issue, since FIB slicing, scanning electron microscopy (SEM) imaging, and other preparation and visualization techniques operating in the kilo-electron-volt range are well-established in geosciences, but researchers are often unaware of the potential for the reduction of Mn and possibly other elements in the samples.


Author(s):  
Mohammad Maleki ◽  
Kevin Soria

Beach litter is a worldwide problem that has several negative effects. A first step in preventing an environmental hazard is to determine and model the level of contamination. In this paper, geostatistical simulation is used to model two main forms of beach litter (cigarette butts and sharp items) in one of the most contaminated beaches in Antofagasta, Chile. A hundred realizations of cigarette butts and broken glass are generated to emulate their joint spatial distribution. The simulation results are used to classify the beach into different areas with respect to the risk of injury by broken glass and the level of contamination by cigarette butts. The models obtained can be used by local authorities in beach clean-up programs and by visitors to beaches in choosing the safest and cleanest areas. The results demonstrate the capability of geostatistical simulation algorithms to model different types of beach litter.


2008 ◽  
Vol 42 (10) ◽  
pp. 3655-3661 ◽  
Author(s):  
Pierre Goovaerts ◽  
Hoa T. Trinh ◽  
Avery H. Demond ◽  
Timothy Towey ◽  
Shu-Chi Chang ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Tayfun Yunsel ◽  
Adem Ersoy

AbstractMineral resource evaluation requires defining geological rock-type domains. The traditional simulation methods have serious limitations for applications to large numbers of domains, which have complex contact relations. Plurigaussian simulation is an effective method which can be applied, in a simple way, to any number of domains, using both local and global geological information to infer the distributions of rock types. This work not only presents the application of the plurigaussian simulation method to the Balya lead-zinc deposit, but also assesses the spatially varying rock type proportions, and accounts for uncertainties between them. These parameters are extremely important for mining deposits, since the mineralizations of interest generally occur only in certain rock types. Furthermore, being able to model the different geological rock types is vital to good mine operations, production planning, and management. The results indicate that the plurigaussian method correctly reproduces the different orientations of the individual rock types, as seen in drill holes, and the proportion of each rock type, even if this varies in space.


2020 ◽  
Vol 980 ◽  
pp. 437-448
Author(s):  
Hui Juan Zhang ◽  
Shou Chen Ma ◽  
Wen Kai Liu ◽  
He Bing Zhang ◽  
Song He Yuan

Underground mining has caused drastic disturbances to regional ecosystems and soil nutrients. Understanding the 3D spatial distribution of soil organic matter in coal arable land is crucial for agricultural production and environmental management. However, little research has been done on the three-dimensional modeling of soil organic matter. In this study, 3D kriging interpolation method and 3D stochastic simulation method were used to develop the 3D model of soil organic matter , and the root-mean-square error (RMSE) and mean error (ME) were used as evaluation indexes to compare the simulation accuracy of the two methods. Results showed that the spatial distribution of soil organic matter obtained by using 3D kriging interpolation method is relatively smooth, which reduce the difference of spatial data; while the spatial distribution of soil organic matter obtained by using 3D stochastic simulation method is relatively discrete and highlights the volatility of spatial distribution of raw data, the RMSE obtained by 3D kriging interpolation method and 3D stochastic simulation method respectively is 2.7711 g/kg and 1.8369 g/kg. The prediction accuracy of organic matter interpolation obtained by 3D stochastic simulation method is higher than that by 3D kriging interpolation method; so the 3D stochastic simulation method can reflect the spatial distribution characteristics of soil organic matter more realistically, and more suitable for 3D modeling of soil organic matter. According to the 3D modeling of soil organic matter, the content of soil organic matter has obvious spatial difference in different soil depth(0-20 cm、20-40 cm、40-60 cm) and decreases with the increase of soil depth; The result also showed that the content of soil organic matter decreased rapidly from the upper slope to the middle slope, and gradually increased from the middle slope to the bottom, so the soil organic matter content was obviously lost in the middle slope. This result may provide useful data for land reclamation and ecological reconstruction in coal mining subsidence area.


Sign in / Sign up

Export Citation Format

Share Document