A one-dimensional numerical study of the salt diffusion in a salinity-gradient solar pond

2004 ◽  
Vol 47 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Celestino Angeli ◽  
Erminia Leonardi
2011 ◽  
Vol 15 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Dalila Akrour ◽  
Mouloud Tribeche ◽  
Djamel Kalache

A theoretical and numerical study of the effect of thermodiffusion on the stability of a gradient layer is presented. It intends to clarify the mechanisms of fluid dynamics and the processes which occur in a salinity gradient solar pond. A mathematical modelling is developed to describe the thermodiffusion contribution on the solar pond where thermal, radiative, and massive fluxes are coupled in the double diffusion. More realistic boundary conditions for temperature and concentration profiles are used. Our results are compared with those obtained experimentally by authors without extracting the heat flux from the storage zone. We have considered the stability analysis of the equilibrium solution. We assumed that the perturbation of quantities such as velocity, temperature, and concentration are infinitesimal. Linearized equations satisfying appropriate prescribed boundary conditions are then obtained and expanded into polynomials form. The Galerkin method along with a symbolic algebra code (Maple) are used to solve these equations. The effect of the separation coefficient y is analyzed in the positive and negative case. We have also numerically compared the critical Rayleigh numbers for the onset of convection with those obtained by the linear stability analysis for Le = 100, ?a = 0.8, and f = 0.5.


2013 ◽  
Vol 805-806 ◽  
pp. 74-77
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Liang Wang ◽  
Ying Wang ◽  
Xi Ping Huang

An experimental study on the evolution of the salinity profiles in the salinity gradient solar ponds was executed using a small model pond. The body of the simulated pond is a cylindrical plastic tank, with 50 cm height and 45 cm diameter. The salinity gradient was established in the laboratory tank by using the salinity redistribution technique. The measurements were taken during a period of 20 days of experimentation. This period of time allowed the existence of salt diffusion from the storage zone to the surface. Results obtained from this study show that when the ratio of brine/water is 1/1, the salinity gradient layer can sustain a longer time and the lower convective zone is thicker, which is benefit to store solar energy.


Author(s):  
Minoo Mehdizadeh ◽  
Goodarz Ahmadi

This study is concerned with computer modeling of flow and thermal analysis of solar ponds with a salinity gradient. Solar ponds have been used as an efficient and environmentally friendly approach for collection of solar energy for low temperature thermal applications. A two-dimensional unsteady computational fluid dynamic (CFD) model was developed and used for numerical study of stability analysis of the pond, as well as heat and mass transfer in the salt gradient solar ponds. Salinity gradient was created in order to stabilize the pond and to restrict convective motions induced by buoyancy driven solar radiation heating during the period of operation. Fluent® commercial software was enhanced with the implementation of User Defined Functions (UDF) and was used in these simulations. The user defined scalar model was included for analyzing the convection and diffusion of the salt concentration in the solar pond. In addition, user defined functions were developed for relating the water density to temperature and salt concentration, as well as, the amount of solar radiation absorption in the solar pond as functions of thermo-physical properties. In the absence of flow exchange, the natural convection in the pond was simulated and the stability of the pond was verified. Development of salt concentration was also studied, and time evolution of temperature distribution in a small scale salinity gradient solar pond was analyzed. For the case of flow exchange at the bottom of the pond, the energy production was evaluated, and the temperature, concentration and flow field were simulated.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 1469-1472
Author(s):  
S. Han ◽  
J. Peddieson

2019 ◽  
Vol 160 ◽  
pp. 231-238 ◽  
Author(s):  
Mohammed Bawahab ◽  
Hosam Faqeha ◽  
Quoc Line Ve ◽  
Ahmadreza Faghih ◽  
Abhijit Date ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document