Numerical study of recovery effect and impingement heat transfer with submerged circular jets of large Prandtl number liquid

1997 ◽  
Vol 40 (11) ◽  
pp. 2647-2653 ◽  
Author(s):  
X.C. Lee ◽  
C.F. Ma ◽  
Q. Zheng ◽  
Y. Zhuang ◽  
Y.Q. Tian
2007 ◽  
Vol 11 (4) ◽  
pp. 171-178
Author(s):  
Khalid Alammar

Using the standard k-e turbulence model, an incompressible, axisymmetric turbulent flow with a sudden expansion was simulated. Effect of Prandtl number on heat transfer characteristics downstream of the expansion was investigated. The simulation revealed circulation downstream of the expansion. A secondary circulation (corner eddy) was also predicted. Reattachment was predicted at approximately 10 step heights. Corresponding to Prandtl number of 7.0, a peak Nusselt number 13 times the fully-developed value was predicted. The ratio of peak to fully-developed Nusselt number was shown to decrease with decreasing Prandtl number. Location of maximum Nusselt number was insensitive to Prandtl number.


Author(s):  
Sanskar S. Panse ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract This paper presents heat transfer characteristics of lobed nozzles, three different lobe configurations viz. three-, four- and six-lobe jets have been tested over a range of Reynolds numbers (based on the effective jet diameter, de) between 8000 and 16000 and normalized jet-to-target spacings (z/de) of 1.6, 3.2 and 4.8. The heat transfer results of lobed configurations were compared to the baseline configuration of circular jets. Steady-state infrared thermography (IRT) experiments were carried out for convective heat transfer coefficient calculations. Experimental results show that the three lobe configuration has a superior heat transfer performance compared to other configurations. Jet-to-target plate standoff distance had drastic effect on the heat transfer performance and contour plots for the lobed nozzles, as heat transfer performance diminished with increase in z/de. For the lobe configurations, with increase in jet-to-target spacing (z/de), the heat transfer coefficient maps tend towards a more circular profile due to the effect of jet diffusion.


1981 ◽  
Vol 103 (2) ◽  
pp. 226-231 ◽  
Author(s):  
G. S. Shiralkar ◽  
C. L. Tien

Heat transfer by natural convection in a horizontal cavity with adiabatic horizontal walls and isothermal side walls is investigated numerically for high aspect ratios (width/height). Comparison is made with existing analytical and experimental results. Agreement is generally good at moderate and high Prandtl numbers to which most previous works have been restricted. Improvements of the existing correlation have been proposed in regions of discrepancy. Extension to the low Prandtl number case, including the range of liquid metals, has been made on the basis of an analytical model for high Rayleigh numbers as well as by numerical solution of the full equations. The agreement between the two is found to be very good. A correlation for the heat transfer is proposed for each of the two different cases of high and low Prandtl number.


Author(s):  
Patrick H. Oosthuizen ◽  
David Naylor

The horizontal frame members that often protrude from the inner surface of a window can significantly effect the convective heat transfer rate from this inner surface to the room. The purpose of the present numerical study was to determine how the size of a pair of horizontal frame members effect this heat transfer rate. The flow has been assumed to be steady and conditions under which laminar, transitional, and turbulent flows occur are considered. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. The governing equations have been solved using the FLUENT commercial CFD code. The k-epsilon turbulence model with standard wall functions and with buoyancy force effects fully accounted for has been used. The solution has the following parameters: the Rayleigh number, the Prandtl number, the dimensionless window recess depth, and the dimensionless width and depth of the frame members. Results have been obtained for a Prandtl number of 0.74.


Author(s):  
Husam Zawati ◽  
Gaurav Gupta ◽  
Yakym Khlyapov ◽  
Erik Fernandez ◽  
Jayanta Kapat ◽  
...  

Abstract The objective of the present study is the evaluation of the heat transfer difference between a novel jet plate configuration and a conventional flat jet orifice plate. Physical mechanisms that lead to a change in Nusselt number when comparing both configurations are discussed in two regions: impingement and crossflow. In the presented work, both plates with identical inline arrays of (20 × 26) circular air jets impinging orthogonally on a flat target comprised of 20 segments parallel to the jet orifice plates, are studied. The first is a staggered configuration of a pimple-dimple (convex-concave) plate. This plate features two jet diameters: (a) 4.63 mm emanating from negative sphere of 14.63 mm in radius inward imprint; (b) 2.19 mm emanating from a positive sphere of 17.07 mm in radius, protruding from the base of the plate. The second jet plate is flat, which serves as a baseline for the heat transfer study. This plate has a constant jet orifice diameters of 3.49 mm, found based on the definition of total average open area of the first plate (NPR configuration). Heat transfer characteristics and turbulent flow structures are investigated over jet-averaged Reynolds numbers (Reav,j) of 5,000, 7,000, and 9,000. Jet-to-plate distance (Z/Dj) is varied between (2.4 – 6.0) jet diameters. A numerical study is carried out to compare various turbulence models (κε-EB, κε-Lag EB, κε-v2f, κω-SST, RST). Numerical simulations are analyzed in detail to explain the underlying mechanism of heat transfer enhancement, related to such geometries. The convex-concaved plate yields lower globally-averaged heat transfer coefficients when compared to a flat jet plate in the impingement region. However, enhancement up to 23% is seen in the crossflow region, where the crossflow effects are dominant in a maximum-crossflow configuration.


Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from isothermal rectangular cylinders which have an exposed upper surface has been numerically studied. The cylinders considered have high aspect ratios, i.e., have high width-to-depth ratios, and are relatively short, i.e., have a “height” that is of the same order of magnitude as their width. The cylinders considered are mounted on a plane adiabatic base, the cylinders being normal to the plane base with the cylinders pointing either vertically upwards or vertically downwards. One of the main aims of the present work was to numerically determine how the depth-to-width ratio of the rectangular cylinder influences the mean heat transfer rate from the cylinder when this depth-to-width ratio is large. The flow has also been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. The solution has been obtained by numerically solving the governing equations using the commercial CFD solver, ANSYS FLUENT©. The solution is dependent on the Rayleigh number, the ratio of the width to the height of the heated cylinder, the ratio of the width to the depth of the heated cylinder, the Prandtl number, Pr, and on whether the cylinder is pointing vertically upwards or vertically downwards. Because of the applications that motivated this study, results have only been obtained for a Prandtl number of 0.74, i.e., effectively the value for air. A range of the other governing parameters has been considered and the effects of these governing parameters on the Nusselt number variation have been examined.


2012 ◽  
Vol 4 (2) ◽  
pp. 337 ◽  
Author(s):  
S. Parvin ◽  
R. Nasrin

A numerical study has been executed to analyze the effects of Reynolds and Prandtl number on mixed convective flow and heat transfer characteristics inside an octagonal vertical channel in presence of a heat-generating hollow circular cylinder placed at the centre. All the walls of the octagon are considered to be adiabatic. Galerkin weighted residual finite element method is used to solve the governing equations of mass, momentum and energy. Results are presented in terms of streamlines, isotherms, the average Nusselt number and the maximum fluid temperature for different combinations of controlling parameters namely, Reynolds number, Prandtl number and Richardson number. The results indicate that the flow and thermal fields as well as the heat transfer rate and the maximum fluid temperature in the octagonal channel depend significantly on the mentioned parameters.Keywords: Heat-generation; Hollow cylinder; Octagonal channel; Mixed convection; Finite element method.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i2.8142   J. Sci. Res. 4 (2), 337-348 (2012)


1997 ◽  
Vol 11 (3) ◽  
pp. 348-358 ◽  
Author(s):  
In Gyu Park ◽  
Bock Choon Pak ◽  
Young I. Cho

Sign in / Sign up

Export Citation Format

Share Document