scholarly journals Targeting mechanism of protein kinase C and its involvement in the regulation of cell responses

2000 ◽  
Vol 82 ◽  
pp. 9
Author(s):  
Naoaki Saito
2017 ◽  
Vol 8 (3-4) ◽  
pp. 143-153 ◽  
Author(s):  
Rishi Kant Singh ◽  
Sanjay Kumar ◽  
Pramod Kumar Gautam ◽  
Munendra Singh Tomar ◽  
Praveen Kumar Verma ◽  
...  

AbstractProtein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.


2000 ◽  
Vol 279 (3) ◽  
pp. L429-L438 ◽  
Author(s):  
Edward C. Dempsey ◽  
Alexandra C. Newton ◽  
Daria Mochly-Rosen ◽  
Alan P. Fields ◽  
Mary E. Reyland ◽  
...  

Individual protein kinase C (PKC) isozymes have been implicated in many cellular responses important in lung health and disease, including permeability, contraction, migration, hypertrophy, proliferation, apoptosis, and secretion. New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced. The importance of targeted translocation of PKC and isozyme-specific binding proteins (like receptors for activated C-kinase and caveolins) is well established. Phosphorylation state and localization are now thought to be key determinants of isozyme activity and specificity. New concepts on the role of individual PKC isozymes in proliferation and apoptosis are emerging. Opposing roles for selected isozymes in the same cell system have been defined. Coupling to the Wnt signaling pathway has been described. Phenotypes for PKC knockout mice have recently been reported. More specific approaches for studying PKC isozymes and their role in cell responses have been developed. Strengths and weaknesses of different experimental strategies are reviewed. Future directions for investigation are identified.


2020 ◽  
Vol 117 (29) ◽  
pp. 17348-17358
Author(s):  
Rosendo G. Hernández ◽  
Chris I. De Zeeuw ◽  
Ruyan Zhang ◽  
Tatyana A. Yakusheva ◽  
Pablo M. Blazquez

The cerebellar posterior vermis generates an estimation of our motion (translation) and orientation (tilt) in space using cues originating from semicircular canals and otolith organs. Theoretical work has laid out the basic computations necessary for this signal transformation, but details on the cellular loci and mechanisms responsible are lacking. Using a multicomponent modeling approach, we show that canal and otolith information are spatially and temporally matched in mouse posterior vermis Purkinje cells and that Purkinje cell responses combine translation and tilt information. Purkinje cell-specific inhibition of protein kinase C decreased and phase-shifted the translation component of Purkinje cell responses, but did not affect the tilt component. Our findings suggest that translation and tilt signals reach Purkinje cells via separate information pathways and that protein kinase C-dependent mechanisms regulate translation information processing in cerebellar cortex output neurons.


Sign in / Sign up

Export Citation Format

Share Document