Protein kinase C isozymes and the regulation of diverse cell responses

2000 ◽  
Vol 279 (3) ◽  
pp. L429-L438 ◽  
Author(s):  
Edward C. Dempsey ◽  
Alexandra C. Newton ◽  
Daria Mochly-Rosen ◽  
Alan P. Fields ◽  
Mary E. Reyland ◽  
...  

Individual protein kinase C (PKC) isozymes have been implicated in many cellular responses important in lung health and disease, including permeability, contraction, migration, hypertrophy, proliferation, apoptosis, and secretion. New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced. The importance of targeted translocation of PKC and isozyme-specific binding proteins (like receptors for activated C-kinase and caveolins) is well established. Phosphorylation state and localization are now thought to be key determinants of isozyme activity and specificity. New concepts on the role of individual PKC isozymes in proliferation and apoptosis are emerging. Opposing roles for selected isozymes in the same cell system have been defined. Coupling to the Wnt signaling pathway has been described. Phenotypes for PKC knockout mice have recently been reported. More specific approaches for studying PKC isozymes and their role in cell responses have been developed. Strengths and weaknesses of different experimental strategies are reviewed. Future directions for investigation are identified.

Author(s):  
Ghanshyam N Pandey ◽  
Anuradha Sharma ◽  
Hooriyah S Rizavi ◽  
Xinguo Ren

Abstract Background Several lines of evidence suggest the abnormalities of protein kinase C (PKC) signaling system in mood disorders and suicide based primarily on the studies of PKC and its isozymes in the platelets and postmortem brain of depressed and suicidal subjects. In this study we examined the role of PKC isozymes in depression and suicide. Methods We determined the protein and mRNA expression of various PKC isozymes in the prefrontal cortical region [Brodmann area 9 (BA9)] in 24 normal control (NC) subjects, 24 depressed suicide (DS) subjects and 12 depressed non-suicide (DNS) subjects. The levels of mRNA in the prefrontal cortex (PFC) were determined by qRT-PCR and the protein expression was determined by Western blotting. Results We observed a significant decrease in mRNA expression of PKCα, PKCβI, PKCδ and PKCε and decreased protein expression either in the membrane or the cytosol fraction of PKC isozymes - PKCα, PKCβI, PKCβII and PKCδ in DS and DNS subjects compared with NC subjects. Conclusions The current study provides detailed evidence of specific dysregulation of certain PKC isozymes in the postmortem brain of DS and DNS subjects and further supports earlier evidence for the role of PKC in the platelets and brain of adult and teenage depressed and suicidal population. This comprehensive study may lead to further knowledge of the involvement of PKC in the pathophysiology of depression and suicide.


2021 ◽  
Vol 22 (11) ◽  
pp. 5527
Author(s):  
Mohammad Mojtaba Sadeghi ◽  
Mohamed F. Salama ◽  
Yusuf A. Hannun

Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 381
Author(s):  
Noelia Geribaldi-Doldán ◽  
Irati Hervás-Corpión ◽  
Ricardo Gómez-Oliva ◽  
Samuel Domínguez-García ◽  
Félix A. Ruiz ◽  
...  

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.


2017 ◽  
Vol 8 (3-4) ◽  
pp. 143-153 ◽  
Author(s):  
Rishi Kant Singh ◽  
Sanjay Kumar ◽  
Pramod Kumar Gautam ◽  
Munendra Singh Tomar ◽  
Praveen Kumar Verma ◽  
...  

AbstractProtein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.


2019 ◽  
Author(s):  
Ann Rita Halvorsen ◽  
Mads Haugland Haugen ◽  
Åsa Kristina Öjlert ◽  
Marius Lund-Iversen ◽  
Lars Jørgensen ◽  
...  

Abstract Background Protein expression is deregulated in cancer, and the proteomic changes observed in lung cancer may be a consequence of mutations in essential genes. The purpose of this study was to identify protein expression associated with prognosis in lung cancers stratified by smoking status, molecular subtypes, and EGFR-, TP53- and KRAS-mutations. Methods We performed profiling of 295 cancer-relevant phosphorylated and non-phosphorylated proteins, using reverse phase protein arrays. Biopsies from 80 patients with operable lung adenocarcinomas were analyzed for protein expression and association with progression free survival (PFS) were studied. Results Spearman rank correlation analysis identified 56 proteins with significant association to PFS (p<0.05). High expression of protein kinase C (PKC)-α and the phosporylated state of PKC-α, PKC-β and PKC-δ, showed the strongest positive correlation to PFS, especially in the wild type samples. This was confirmed in gene expression data from 186 samples. Based on protein expression, unsupervised hierarchical clustering separated the samples into four subclusters enriched with the molecular subtypes TRU, PI or PP (p=0.0001). Subcluster 2 contained a smaller cluster (2a) enriched with samples of the subtype PP, low expression of the PKC isozymes, and associated with poor PFS (p=0.003) compared to the other samples. Subcluster 2a revealed increased expression of neuroendocrine markers, supporting the aggressive behavior. Low expression of the PKC isozymes in the subtype PP and a reduced relapse free survival was confirmed with the TCGA LUAD samples. Conclusion This study identified different proteins associated with PFS depending on molecular subtype, smoking- and mutational-status, with PKC-α, PKC-β and PKC-δ showing the strongest correlation. Cluster analysis detected a subgroup of samples enriched for samples of the PP subtype and poor PFS, which may benefit from a more aggressive treatment regimen.


2001 ◽  
Vol 281 (1) ◽  
pp. C17-C23 ◽  
Author(s):  
Sheng-Jun Pan ◽  
Mingyan Zhu ◽  
Mohan K. Raizada ◽  
Colin Sumners ◽  
Craig H. Gelband

It was previously determined that ANG II and phorbol esters inhibit Kv current in neurons cultured from newborn rat hypothalamus and brain stem in a protein kinase C (PKC)- and Ca2+-dependent manner. Here, we have further defined this signaling pathway by investigating the roles of “physiological” activators of PKC and different PKC isozymes. The cell-permeable PKC activators, diacylglycerol (DAG) analogs 1,2-dioctanoyl- sn-glycerol (1 μmol/l, n = 7) and 1-oleoyl-2-acetyl- sn-glycerol (1 μmol/l, n = 6), mimicked the effect of ANG II and inhibited Kv current. These effects were abolished by the PKC inhibitor chelerythrine (1 μmol/l, n = 5) or by chelation of internal Ca2+ ( n = 8). PKC antisense (AS) oligodeoxynucleotides (2 μmol/l) against Ca2+-dependent PKC isoforms were applied to the neurons to manipulate the endogenous levels of PKC. PKC-α-AS ( n = 4) treatment abolished the inhibitory effects of ANG II and 1-oleoyl-2-acetyl- sn-glycerol on Kv current, whereas PKC-β-AS ( n = 4) and PKC-γ-AS ( n = 4) did not. These results suggest that the angiotensin type 1 receptor-mediated effects of ANG II on neuronal Kv current involve activation of PKC-α.


2006 ◽  
Vol 291 (5) ◽  
pp. H2282-H2289 ◽  
Author(s):  
Hongying Zhang ◽  
DaLiao Xiao ◽  
Lawrence D. Longo ◽  
Lubo Zhang

Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates α1-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca2+ concentrations ([Ca2+]i) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca2+]i and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca2+]i. Western blot analysis showed six PKC isozymes, α, βI, βII, δ, ε, and ζ, in uterine arteries, among which βI, βII, and ζ isozymes were significantly increased in PUA sheep. In contrast, PKC-α was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-ε in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on α1-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca2+ mobilization and Ca2+ sensitivity in α1-adrenoceptor-mediated contractions and their adaptation to pregnancy.


Endocrinology ◽  
1998 ◽  
Vol 139 (11) ◽  
pp. 4455-4465 ◽  
Author(s):  
Brian D. Strahl ◽  
Huey-Jing Huang ◽  
Joseph Sebastian ◽  
Basavdutta R. Ghosh ◽  
William L. Miller

Abstract FSH is an α/β heterodimeric glycoprotein, the formation of which is regulated primarily by expression of its β-subunit. Recent studies on transcriptional regulation of the ovine FSH β-subunit gene (oFSHβ) have defined two functional activating protein-1 (AP-1) enhancers in the proximal promoter (located at −120 and −83 bp) that are probably physiologically important for FSHβ expression. As GnRH is a major regulator of FSHβ expression and is also known to stimulate the synthesis of Jun and Fos family members (AP-1), we investigated the possibility that oFSHβ transcription may be regulated by GnRH through AP-1. Here we report the use of an in vitro cell system involving transient transfection of GnRH receptors (GnRHR) into HeLa cells to define regulatory elements involved in GnRH-mediated induction of oFSHβ. This system was used to show that expression of luciferase constructs containing either the −4741/+759 region of the oFSHβ gene (−4741oFSHβ-Luc) or the −846/+44 region of the human α gene (α-Luc; a positive control) was stimulated 3.1 ± 0.3- and 7.7 ± 1.9-fold, respectively, by 100 nm GnRH. Another luciferase expression plasmid containing the Rous sarcoma virus promoter (a negative control) showed no response to GnRH. Similar results with these constructs were obtained in COS-7 cells. Studies with progressive 5′-deletion constructs and site-specific mutations demonstrated that this stimulation was dependent on each AP-1 site in the proximal promoter of oFSHβ. Gel shift assays demonstrated the ability of GnRHR in HeLa cells to increase AP-1 binding activity. Responses in the HeLa cell system were dependent on GnRH (ED50 = 0.5 nm) and GnRHR, which was identified by photoaffinity labeling. In addition, GnRHR-expressing HeLa cells exhibited a normal GnRH-dependent mobilization of intracellular calcium. Finally, as protein kinase C (PKC) is a known target of GnRH action in gonadotropes, the role of PKC in transcriptional regulation of oFSHβ and α-subunit genes by GnRH in HeLa cells was investigated. Although 12-O-tetradecanoyl 13-acetate induction of α-Luc and −215oFSHβ-Luc could be completely blocked in a dose-dependent manner by the specific PKC inhibitor bisindolylmaleimide I, only 57–65% of the GnRH-mediated stimulation of these promoters was blocked, demonstrating the involvement of PKC as well as other signaling systems in GnRH induction. These data define a molecular action of GnRH on oFSHβ gene transcription that involves two proximal AP-1 enhancer elements and PKC activation. Furthermore, these studies establish the usefulness of HeLa and COS-7 cells to investigate specific aspects of GnRH action on gonadotropin subunit gene expression, as similar signaling pathways and transcription factors that are activated by GnRH in gonadotropes (such as PKC, mitogen-activated protein kinase, Ca2+, and AP-1) exist in these cells.


Sign in / Sign up

Export Citation Format

Share Document