Protein kinase C-α and the regulation of diverse cell responses

2017 ◽  
Vol 8 (3-4) ◽  
pp. 143-153 ◽  
Author(s):  
Rishi Kant Singh ◽  
Sanjay Kumar ◽  
Pramod Kumar Gautam ◽  
Munendra Singh Tomar ◽  
Praveen Kumar Verma ◽  
...  

AbstractProtein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.

1987 ◽  
Vol 253 (2) ◽  
pp. C219-C229 ◽  
Author(s):  
L. L. Muldoon ◽  
G. A. Jamieson ◽  
A. C. Kao ◽  
H. C. Palfrey ◽  
M. L. Villereal

The mitogen-induced activation of Na+-H+ exchange was investigated in two cultured human fibroblast strains (HSWP and WI-38 cells) that, based on previous studies, differed in their response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (L. M. Vincentini and M. L. Villereal, Proc. Natl. Acad. Sci. USA 82: 8053-8056, 1985). The role of protein kinase C in the activation of Na+-H+ exchange was investigated by comparing the effects of TPA on Na+ influx, in vitro phosphorylation, and in vivo phosphorylation in both cell types. Although both cell types have significant quantities of protein kinase C activity that can be activated by TPA in intact cells, the addition of TPA to intact cells stimulates Na+ influx in WI-38 cells but not in HSWP cells, indicating that in HSWP cells the stimulation of protein kinase C is not sufficient to activate the Na+-H+ exchanger. Cells were then depleted of protein kinase C activity by chronic treatment with high doses of TPA. Both HSWP and WI-38 cells were rendered protein kinase C deficient by this treatment as determined by in vitro and in vivo phosphorylation studies. Protein kinase C-deficient HSWP cells lose the ability for TPA to inhibit the serum-induced activation of Na+-H+ exchange, but there is no reduction in the stimulation of Na+ influx by serum, bradykinin, vasopressin, melittin, or vanadate, indicating that protein kinase C activity is not necessary for the mitogen-induced activation of Na+-H+ exchange in HSWP cells by agents known to stimulate phosphatidylinositol turnover (G. A. Jamieson and M. Villereal. Arch. Biochem. Biophys. 252: 478-486, 1987). In contrast, depletion of protein kinase C activity in WI-38 cells significantly reduces both the TPA- and the serum-induced activation of the Na+-H+ exchange system, suggesting that protein kinase C activity is necessary for at least a portion of the mitogen-induced activation of the Na+-H+ exchanger in WI-38 cells. These results indicate that the mechanisms for regulating Na+-H+ exchange can differ dramatically between different types of fibroblasts.


2000 ◽  
Vol 279 (3) ◽  
pp. L429-L438 ◽  
Author(s):  
Edward C. Dempsey ◽  
Alexandra C. Newton ◽  
Daria Mochly-Rosen ◽  
Alan P. Fields ◽  
Mary E. Reyland ◽  
...  

Individual protein kinase C (PKC) isozymes have been implicated in many cellular responses important in lung health and disease, including permeability, contraction, migration, hypertrophy, proliferation, apoptosis, and secretion. New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced. The importance of targeted translocation of PKC and isozyme-specific binding proteins (like receptors for activated C-kinase and caveolins) is well established. Phosphorylation state and localization are now thought to be key determinants of isozyme activity and specificity. New concepts on the role of individual PKC isozymes in proliferation and apoptosis are emerging. Opposing roles for selected isozymes in the same cell system have been defined. Coupling to the Wnt signaling pathway has been described. Phenotypes for PKC knockout mice have recently been reported. More specific approaches for studying PKC isozymes and their role in cell responses have been developed. Strengths and weaknesses of different experimental strategies are reviewed. Future directions for investigation are identified.


1989 ◽  
Vol 260 (3) ◽  
pp. 915-922 ◽  
Author(s):  
J P Simon ◽  
M F Bader ◽  
D Aunis

Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.


2005 ◽  
Vol 33 (6) ◽  
pp. 1341-1344 ◽  
Author(s):  
A. Morgan ◽  
R.D. Burgoyne ◽  
J.W. Barclay ◽  
T.J. Craig ◽  
G.R. Prescott ◽  
...  

PKC (protein kinase C) has been known for many years to modulate regulated exocytosis in a wide variety of cell types. In neurons and neuroendocrine cells, PKC regulates several different stages of the exocytotic process, suggesting that these multiple actions of PKC are mediated by phosphorylation of distinct protein targets. In recent years, a variety of exocytotic proteins have been identified as PKC substrates, the best characterized of which are SNAP-25 (25 kDa synaptosome-associated protein) and Munc18. In the present study, we review recent evidence suggesting that site-specific phosphorylation of SNAP-25 and Munc18 by PKC regulates distinct stages of exocytosis.


2004 ◽  
Vol 82 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Meenakshi Sundaram ◽  
Harold W Cook ◽  
David M Byers

Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) are essential proteins that are implicated in coordination of membrane-cytoskeletal signalling events, such as cell adhesion, migration, secretion, and phagocytosis in a variety of cell types. The most prominent structural feature of MARCKS and MRP is a central basic effector domain (ED) that binds F-actin, Ca2+-calmodulin, and acidic phospholipids; phosphorylation of key serine residues within the ED by protein kinase C (PKC) prevents the above interactions. While the precise roles of MARCKS and MRP have not been established, recent attention has focussed on the high affinity of the MARCKS ED for phosphatidylinositol 4,5-bisphosphate (PIP2), and a model has emerged in which calmodulin- or PKC-mediated regulation of these proteins at specific membrane sites could in turn control spatial availability of PIP2. The present review summarizes recent progress in this area and discusses how the above model might explain a role for MARCKS and MRP in activation of phospholipase D and other PIP2-dependent cellular processes.Key words: MARCKS, MRP, protein kinase C, PIP2, phospholipase D.


2010 ◽  
Vol 299 (4) ◽  
pp. C770-C778 ◽  
Author(s):  
Jianfen Guo ◽  
Lin Cong ◽  
Vitalyi O. Rybin ◽  
Zoya Gertsberg ◽  
Susan F. Steinberg

Protein kinase C-δ (PKCδ) exerts important cardiac actions as a lipid-regulated kinase. There is limited evidence that PKCδ also might exert an additional kinase-independent action as a regulator of the subcellular compartmentalization of binding partners such as Shc (Src homologous and collagen), a family of adapter proteins that play key roles in growth regulation and oxidative stress responses. This study shows that native PKCδ forms complexes with endogenous Shc proteins in H2O2-treated cardiomyocytes; H2O2 treatment also leads to the accumulation of PKCδ and Shc in a detergent-insoluble cytoskeletal fraction and in mitochondria. H2O2-dependent recruitment of Shc isoforms to cytoskeletal and mitochondrial fractions is amplified by wild-type-PKCδ overexpression, consistent with the notion that PKCδ acts as a signal-regulated scaffold to anchor Shc in specific subcellular compartments. However, overexpression studies with kinase-dead (KD)-PKCδ-K376R (an ATP-binding mutant of PKCδ that lacks catalytic activity) are less informative, since KD-PKCδ-K376R aberrantly localizes as a constitutively tyrosine-phosphorylated enzyme to detergent-insoluble and mitochondrial fractions of resting cardiomyocytes; relatively little KD-PKCδ-K376R remains in the cytosolic fraction. The aberrant localization and tyrosine phosphorylation patterns for KD-PKCδ-K376R do not phenocopy the properties of native PKCδ, even in cells chronically treated with GF109203X to inhibit PKCδ activity. Hence, while KD-PKCδ-K376R overexpression increases Shc localization to the detergent-insoluble and mitochondrial fractions, the significance of these results is uncertain. Our studies suggest that experiments using KD-PKCδ-K376R overexpression as a strategy to competitively inhibit the kinase-dependent actions of native PKCδ or to expose the kinase-independent scaffolding functions of PKCδ should be interpreted with caution.


2013 ◽  
Vol 556 ◽  
pp. 166-169 ◽  
Author(s):  
Núria Besalduch ◽  
Maria A. Lanuza ◽  
Neus Garcia ◽  
Teresa Obis ◽  
Manel M. Santafe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document