Osteopontin stimulates Mitogen-activated Protein Kinases (MAPK) and Cell Growth through Activation of αvβ3 integrin in human endothelial cells

2000 ◽  
Vol 151 (1) ◽  
pp. 30
Author(s):  
M Mogi ◽  
K Fukuo ◽  
T Ogihara
2004 ◽  
Vol 92 (10) ◽  
pp. 846-857 ◽  
Author(s):  
Nikos Tsopanoglou ◽  
Matthew Papaconstantinou ◽  
Christodoulos Flordellis ◽  
Michael Maragoudakis

SummaryIn a previous report we have presented evidence that thrombin interacts with αvβ3 integrin in endothelial cells at the molecular and cellular level. This interaction was shown to be of functional significance in vitro and in vivo and contributed to activation of angiogenesis by thrombin. In the present study, we have used a synthetic thrombin peptide, TP508, which represents residues 183 to 200 of human thrombin. This peptide lacks the catalytic site of thrombin but contains the thrombin RGD sequence. Immobilized (surface-coated) TP508 peptide, like thrombin, supported αvβ3 integrin-dependent endothelial cell attachment and haptotactic migration. These effects were specific (a scrambled TP508 peptide was without effect), and dosedependent. The RGD sequence was essential since a modified TP508 peptide, which contained RAD sequence instead of RGD, was inactive. Immobilized TP508 peptide stimulated phosphorylation of mitogen-activated protein kinases and focal adhesion kinase, the signal transduction pathways characteristic for integrin activation. On the other hand, TP508 peptide, when in solution, did not mimic other thrombin-promoted angiogenic effects, such as that of activation gelatinase A, upregulation of expression of vascular endothelial growth factor receptor mRNA or prostacyclin PGI2 release in endothelial cells. On the contrary, soluble TP508 acted as an antagonist for the aforementioned effects of thrombin. TP508 peptide inhibited these thrombin-induced effects through a RGD and α. vβ3-related mechanism. The antagonism with thrombin or thrombin receptor activating peptide was specific and involved at least in part mitogen-activated protein kinases activation. These results point to the importance of RGD sequence of thrombin in mediating effects on endothelial cells and angiogenesis.


2000 ◽  
Vol 89 (6) ◽  
pp. 2391-2400 ◽  
Author(s):  
Hiroyuki Kito ◽  
Emery L. Chen ◽  
Xiujie Wang ◽  
Masataka Ikeda ◽  
Nobuyoshi Azuma ◽  
...  

The aim of this study was to examine the role of mitogen-activated protein kinases (MAPKs) activation in bovine pulmonary arterial endothelial cells (EC) exposed to cyclic strain. EC were subjected to 10% average strain at 60 cycles/min. Cyclic strain induced activation of extracellular signal-regulated kinase (ERK; 1.5-fold), c-Jun NH2-terminal protein kinase (JNK; 1.9-fold), and p38 (1.5-fold) with a peak at 30 min. To investigate the functional role of the activated MAPKs, we analyzed cells after treatment with PD-98059, a specific ERK kinase inhibitor, or SB-203580, a catalytic inhibitor for p38, and after transient transfection with JNK(K-R), and MEKK(K-M) the respective catalytically inactive mutants of JNK1 and MAPK kinase kinase-1. Cyclic strain increased activator protein-1 (AP-1) binding activity, which was blocked by PD-98059 and SB-203580. Activity of AP-1-dependent luciferase reporter driven by 12- O-tetradecanoyl-phorbol-13-acetate-responsive element (TRE) was induced by cyclic strain, and this was attenuated by PD-98059, MEKK(K-M), JNK(K-R), and SB-203580. PD-98059 and SB-203850 did not inhibit cell alignment and migration induced by cyclic strain. MEKK(K-M) and JNK(K-R) transfection did not block cyclic strain-induced cell alignment. In conclusion, cyclic strain activates ERK, JNK, and p38, and their activation plays a role in transcriptional activation of AP-1/TRE but not in cell alignment and migration changes in bovine pulmonary arterial EC.


Sign in / Sign up

Export Citation Format

Share Document