scholarly journals Topological localization of the human transcription factors IIA, IIB, TATA box-binding protein, and RNA polymerase II-associated protein 30 on a class II promoter.

1994 ◽  
Vol 269 (31) ◽  
pp. 19962-19967 ◽  
Author(s):  
B. Coulombe ◽  
J. Li ◽  
J. Greenblatt
Gene ◽  
2019 ◽  
Vol 706 ◽  
pp. 43-51 ◽  
Author(s):  
Rabab Asghar Abdulwahab ◽  
Abdul Ameer A. Allaith ◽  
Zakia Shinwari ◽  
Ayodele Alaiya ◽  
Hayder A. Giha

1989 ◽  
Vol 9 (1) ◽  
pp. 342-344
Author(s):  
M W Van Dyke ◽  
M Sawadogo ◽  
R G Roeder

Commitment of a TATA box-driven class II gene to transcription requires binding of only one transcription factor, TFIID. Additional factors (TFIIB, TFIIE, and RNA polymerase II) do not remain associated with the TFIID-promoter complex during the course of transcription. This indicates that there are two intermediates along the transcription reaction pathway which may be potential targets for the regulation of gene expression.


Development ◽  
1994 ◽  
Vol 120 (8) ◽  
pp. 2347-2357 ◽  
Author(s):  
D.M. Worrad ◽  
P.T. Ram ◽  
R.M. Schultz

We previously demonstrated that an Sp1-dependent reporter gene is preferentially expressed in G2 of the 1-cell mouse embryo following microinjection of the male pronucleus when compared to microinjection of the female pronucleus (P.T. Ram and R.M. Schultz, 1993, Dev. Biol. 156, 552–556). We also noted that expression of the reporter gene is not observed following microinjection of the germinal vesicle of the fully grown oocyte. In the present study, we examined expression of this reporter gene during oocyte growth, as well as the nuclear concentration of two transcription factors, Sp1 and the TATA box-binding protein, TBP, during oocyte growth and the first cell cycle. The extent of reporter gene expression decreases during oocyte growth and this decrease correlates with the decrease in nuclear concentration of Sp1, as determined by confocal immunofluorescent microscopy. In addition, results of immunoblotting experiments also indicate a similar decrease in the total concentration of Sp1 during oocyte growth. The nuclear concentration of TBP also decreases during oocyte growth, as determined by confocal immunofluorescent microscopy. Following fertilization, the pronuclear concentration of these two transcription factors increases in a time-dependent fashion and the concentration of each is greater in the male pronucleus as compared to the female pronucleus. For each pronucleus and for each transcription factor, this increase in nuclear concentration is inhibited by aphidicolin, which inhibits DNA synthesis. Last, the increase in nuclear concentration of these two proteins observed between the 1-cell and 2-cell stages does not require transcription or cytokinesis.


2013 ◽  
Vol 288 (38) ◽  
pp. 27564-27570 ◽  
Author(s):  
Neha Verma ◽  
Ko-Hsuan Hung ◽  
Jin Joo Kang ◽  
Nermeen H. Barakat ◽  
William E. Stumph

In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459–469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.


1989 ◽  
Vol 9 (1) ◽  
pp. 342-344 ◽  
Author(s):  
M W Van Dyke ◽  
M Sawadogo ◽  
R G Roeder

Commitment of a TATA box-driven class II gene to transcription requires binding of only one transcription factor, TFIID. Additional factors (TFIIB, TFIIE, and RNA polymerase II) do not remain associated with the TFIID-promoter complex during the course of transcription. This indicates that there are two intermediates along the transcription reaction pathway which may be potential targets for the regulation of gene expression.


2020 ◽  
Author(s):  
Angelica F. Castañeda ◽  
Allison L. Didychuk ◽  
Robert K. Louder ◽  
Chloe O. McCollum ◽  
Zoe H. Davis ◽  
...  

ABSTRACTβ- and γ-herpesviruses include the oncogenic human viruses Kaposi’s sarcoma-associated virus (KSHV) and Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV), which is a significant cause of congenital disease. Near the end of their replication cycle, these viruses transcribe their late genes in a manner distinct from host transcription. Late gene transcription requires six virally-encoded proteins, one of which is a functional mimic of host TATA-box-binding protein (TBP) that is also involved in recruitment of RNA polymerase II (Pol II) via unknown mechanisms. Here, we applied biochemical protein interaction studies together with electron microscopy-based imaging of a reconstituted human preinitiation complex to define the mechanism underlying Pol II recruitment. These data revealed that the herpesviral TBP, encoded by ORF24 in KSHV, makes a direct protein-protein contact with the C-terminal domain of host RNA polymerase II (Pol II), which is a unique feature that functionally distinguishes viral from cellular TBP. The interaction is mediated by the N-terminal domain (NTD) of ORF24 through a conserved motif that is shared in its β- and γ-herpesvirus homologs. Thus, these herpesviruses employ an unprecedented strategy in eukaryotic transcription, wherein promoter recognition and polymerase recruitment are facilitated by a single transcriptional activator with functionally distinct domains.SIGNIFICANCE STATEMENTThe β- and γ-herpesviruses mediate their late gene transcription through a set of viral transcriptional activators (vTAs). One of these vTAs, ORF24 in Kaposi’s sarcoma-associated herpesvirus (KSHV), is a mimic of host TATA-box-binding protein (TBP). We demonstrate that the N-terminal domain of ORF24 and its homologs from other β- and γ-herpesviruses directly bind the unstructured C-terminal domain (CTD) of RNA Pol II. This functionally distinguishes the viral TBP mimic from cellular TBP, which does not bind Pol II. Thus, herpesviruses encode a transcription factor that has the dual ability to directly interact with promoter DNA and the polymerase, a property which is unique in eukaryotic transcription and is conceptually akin to prokaryotic transcription factors.


Sign in / Sign up

Export Citation Format

Share Document