scholarly journals Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase.

1979 ◽  
Vol 254 (16) ◽  
pp. 8052-8056 ◽  
Author(s):  
M.C. Alexander ◽  
E.M. Kowaloff ◽  
L.A. Witters ◽  
D.T. Dennihy ◽  
J. Avruch
2013 ◽  
Vol 38 (11) ◽  
pp. 2024-2033 ◽  
Author(s):  
Chang-Ning LI ◽  
Qian NONG ◽  
Qin-Liang TAN ◽  
SRIVASTAVA Manoj Kumar ◽  
Li-Tao YANG ◽  
...  

Author(s):  
Kenneth Verstraete ◽  
Koen H. G. Verschueren ◽  
Ann Dansercoer ◽  
Savvas N. Savvides

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Chenyang Qiao ◽  
Wenjie Huang ◽  
Jie Chen ◽  
Weibo Feng ◽  
Tongyue Zhang ◽  
...  

AbstractMetastasis is the major reason for the high mortality of colorectal cancer (CRC) patients and its molecular mechanism remains unclear. Here, we report a novel role of Homeobox A13 (HOXA13), a member of the Homeobox (HOX) family, in promoting CRC metastasis. The elevated expression of HOXA13 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in two independent CRC cohorts. Overexpression of HOXA13 promoted CRC metastasis whereas downregulation of HOXA13 suppressed CRC metastasis. Mechanistically, HOXA13 facilitated CRC metastasis by transactivating ATP-citrate lyase (ACLY) and insulin-like growth factor 1 receptor (IGF1R). Knockdown of ACLY and IGFIR inhibited HOXA13-medicated CRC metastasis, whereas ectopic overexpression of ACLY and IGFIR rescued the decreased CRC metastasis induced by HOXA13 knockdown. Furthermore, Insulin-like growth factor 1 (IGF1), the ligand of IGF1R, upregulated HOXA13 expression through the PI3K/AKT/HIF1α pathway. Knockdown of HOXA13 decreased IGF1-mediated CRC metastasis. In addition, the combined treatment of ACLY inhibitor ETC-1002 and IGF1R inhibitor Linsitinib dramatically suppressed HOXA13-mediated CRC metastasis. In conclusion, HOXA13 is a prognostic biomarker in CRC patients. Targeting the IGF1-HOXA13-IGF1R positive feedback loop may provide a potential therapeutic strategy for the treatment of HOXA13-driven CRC metastasis.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3137
Author(s):  
Shuguang Guan ◽  
Qiaoli Pu ◽  
Yinan Liu ◽  
Honghong Wu ◽  
Wenbo Yu ◽  
...  

Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.


1975 ◽  
Vol 21 (7) ◽  
pp. 880-883 ◽  
Author(s):  
Francesco Belfiore ◽  
Vito Borzi ◽  
Luigi Lo Vecchio ◽  
Elena Napoli ◽  
Agata M Rabuazzo

Abstract With respect to the enzymes of NADPH-forming metabolic pathways in human leukocytes: (a) Glucose-6phosphate dehydrogenase and phosphogluconate dehydrogenase (decarboxylating) were less active in leukocytes (mostly myeloblasts) from eight patients with acute myeloblastic leukemia (I) than in leukocytes (mostly granulocytes) from 16 normal subjects (II) or 16 patients with chronic myelocytic leukemia (III). (b) Of the enzymes of the citrate cleavage pathway, ATP citrate lyase and malate dehydrogenase (decarboxylating) (NADP+) were virtually absent in the cells studied. (c) Isocitrate dehydrogenase (NADP+), aspartate aminotransferase, and alanine aminotransferase, which, together with the much more active malate dehydrogenase, constitute a newly proposed NADPH-forming metabolic cycle, showed a higher activity in I than in II or III, and therefore could compensate, as concerns NADPHgeneration, for the low activity of pentose cycle dehydrogenases. We are not sure whether the enzymatic characteristic of I cells is attributable to their immaturity or to their leukemic nature.


Sign in / Sign up

Export Citation Format

Share Document