igf1r inhibitor
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi3-vi3
Author(s):  
Satoru Osuka ◽  
Dan Zhu ◽  
Zhaobin Zhang ◽  
Chaoxi Li ◽  
Christian T Stackhouse ◽  
...  

Abstract Glioblastoma (GBM) is composed of a variety of tumor cell populations including those with stem cell properties, known as glioma stem cells (GSCs). GSCs are innately less sensitive to radiation than the tumor bulk and are believed to drive GBM formation and recurrence following repeated irradiation. However, it is unclear how GSCs adapt to avoid the toxicity of repeated irradiation used in clinical practice. We established radioresistant human and mouse GSCs by exposing them to repeated rounds of irradiation in order to uncover critical mediators of adaptive radioresistance. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs reduced their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which decreased Wnt/ β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking β-catenin binding region, led to increased radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and β-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype can be reversed with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our research provides a deeper understanding of adaptive radioresistance after repeated irradiation, and validates the IGF1/N-cadherin/β-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability.


2021 ◽  
Author(s):  
Philip J. Medeiros ◽  
Sydney Pascetta ◽  
Sarah Kirsh ◽  
Baraa K. Al-Khazraji ◽  
James Uniacke

Neuropeptide Y (NPY) is an abundant neurohormone in the central and peripheral nervous system involved in feeding behavior, energy balance, nociception, and anxiety. Several NPY receptor (NPYR) subtypes display elevated expression in many cancers including in breast cancer where this is exploited for imaging and diagnosis. Here, we show that NPY1R and NPY5R mRNA abundance is induced by hypoxia in a Hypoxia Inducible Factor (HIF)-dependent manner in breast cancer cell lines MCF7 and MDA-MB-231. The HIFs bind to several genomic regions upstream of the NPY1R and NPY5R transcription start sites. The MAPK/ERK pathway is activated more rapidly upon NPY5R stimulation in hypoxic cells compared to normoxic cells. This pathway requires IGF1R activity in normoxia, but not in hypoxic cells where they display resistance to the radiosensitizer and IGF1R inhibitor AG1024. Hypoxic cells proliferate and migrate more when stimulated with NPY relative to normoxic cells, with a more robust response observed with a Y5-specific agonist. Our data suggest that hypoxia induced NPYRs render hypoxic cells more sensitive to NPY stimulation. Considering that breast tissue receives a constant supply of NPY, and hypoxia is a common feature of the tumor microenvironment, breast tumors are the perfect storm for hyperactive NPYR. This study not only highlights a new relationship between the HIFs and NPYR expression and activity, but may inform the use of chemotherapeutics targeting NPYRs and hypoxic cells.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Chenyang Qiao ◽  
Wenjie Huang ◽  
Jie Chen ◽  
Weibo Feng ◽  
Tongyue Zhang ◽  
...  

AbstractMetastasis is the major reason for the high mortality of colorectal cancer (CRC) patients and its molecular mechanism remains unclear. Here, we report a novel role of Homeobox A13 (HOXA13), a member of the Homeobox (HOX) family, in promoting CRC metastasis. The elevated expression of HOXA13 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in two independent CRC cohorts. Overexpression of HOXA13 promoted CRC metastasis whereas downregulation of HOXA13 suppressed CRC metastasis. Mechanistically, HOXA13 facilitated CRC metastasis by transactivating ATP-citrate lyase (ACLY) and insulin-like growth factor 1 receptor (IGF1R). Knockdown of ACLY and IGFIR inhibited HOXA13-medicated CRC metastasis, whereas ectopic overexpression of ACLY and IGFIR rescued the decreased CRC metastasis induced by HOXA13 knockdown. Furthermore, Insulin-like growth factor 1 (IGF1), the ligand of IGF1R, upregulated HOXA13 expression through the PI3K/AKT/HIF1α pathway. Knockdown of HOXA13 decreased IGF1-mediated CRC metastasis. In addition, the combined treatment of ACLY inhibitor ETC-1002 and IGF1R inhibitor Linsitinib dramatically suppressed HOXA13-mediated CRC metastasis. In conclusion, HOXA13 is a prognostic biomarker in CRC patients. Targeting the IGF1-HOXA13-IGF1R positive feedback loop may provide a potential therapeutic strategy for the treatment of HOXA13-driven CRC metastasis.


Author(s):  
Go Makimoto ◽  
Kiichiro Ninomiya ◽  
Toshio Kubo ◽  
Ryota Sunami ◽  
Yuka Kato ◽  
...  

Abstract Objective A third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimertinib, is the standard treatment for patients with non-small cell lung cancer harbouring mutant EGFR. Unfortunately, these patients inevitably acquire resistance to EGFR-TKI therapies, including osimertinib. However, the mechanism associated with this resistance remains unclear. Methods A 63-year-old Japanese female with lung adenocarcinoma underwent right upper lobectomy (pT1bN2M0 pStage IIIA, EGFR Ex21 L858R). She manifested post-operative tumour recurrence with multiple lung metastases 8 months later and began gefitinib treatment. The lung lesions re-grew 15 months later, and EGFR T790M mutation was detected in the lung metastasis re-biopsy. She was administered osimertinib; however, it relapsed with pleural effusion 16 months later. We isolated cells from the osimertinib-resistant pleural effusion to establish a novel cell line, ABC-31. Results Although the EGFR L858R mutation was detected in ABC-31 cells, the T790M mutation was lost. ABC-31 cells were resistant to EGFR-TKIs, including osimertinib. Phospho-receptor tyrosine kinase array revealed activation of the insulin-like growth factor 1 receptor (IGF1R), whereas overexpression of the IGF1R ligand, IGF2, induced IGF1R activation in ABC-31 cells. Combination therapy using EGFR-TKIs and IGF1R inhibitor acted synergistically in vitro. She was re-administered osimertinib since EGFR-TKIs and IGF1R inhibitor combination therapy was impossible in clinical practice. This had a slight and short-lived effect. Conclusions Taken together, we have successfully established a new osimertinib-resistant lung adenocarcinoma cell line with activated IGF1R. These ABC-31 cells will help develop novel therapeutic strategies for patients with lung adenocarcinoma resistant to specific treatment via IGF1R activation.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii199-ii199
Author(s):  
Satoru Osuka ◽  
Dan Zhu ◽  
Zhaobin Zhang ◽  
Oltea Sampetrean ◽  
Jeffrey Olson ◽  
...  

Abstract Glioblastoma (GBM) is composed of heterogeneous tumor cell populations including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of b-catenin at the cell surface, which suppressed Wnt/ b-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking b-catenin binding region, led to induce radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and b-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our study deepens our understanding of adaptive radioresistance during repeated irradiation in GBM, and validates the IGF1/N-cadherin/b-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability.


2020 ◽  
Vol 21 (21) ◽  
pp. 7815
Author(s):  
Tomoko Okuyama ◽  
Jun Shirakawa ◽  
Kazuki Tajima ◽  
Yoko Ino ◽  
Heidrun Vethe ◽  
...  

Abnormal hepatic insulin signaling is a cause or consequence of hepatic steatosis. DPP-4 inhibitors might be protective against fatty liver. We previously reported that the systemic inhibition of insulin receptor (IR) and IGF-1 receptor (IGF1R) by the administration of OSI-906 (linsitinib), a dual IR/IGF1R inhibitor, induced glucose intolerance, hepatic steatosis, and lipoatrophy in mice. In the present study, we investigated the effects of a DPP-4 inhibitor, linagliptin, on hepatic steatosis in OSI-906-treated mice. Unlike high-fat diet-induced hepatic steatosis, OSI-906-induced hepatic steatosis is not characterized by elevations in inflammatory responses or oxidative stress levels. Linagliptin improved OSI-906-induced hepatic steatosis via an insulin-signaling-independent pathway, without altering glucose levels, free fatty acid levels, gluconeogenic gene expressions in the liver, or visceral fat atrophy. Hepatic quantitative proteomic and phosphoproteomic analyses revealed that perilipin-2 (PLIN2), major urinary protein 20 (MUP20), cytochrome P450 2b10 (CYP2B10), and nicotinamide N-methyltransferase (NNMT) are possibly involved in the process of the amelioration of hepatic steatosis by linagliptin. Thus, linagliptin improved hepatic steatosis induced by IR and IGF1R inhibition via a previously unknown mechanism that did not involve gluconeogenesis, lipogenesis, or inflammation, suggesting the non-canonical actions of DPP-4 inhibitors in the treatment of hepatic steatosis under insulin-resistant conditions.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1490
Author(s):  
Hsin-Wei Jen ◽  
De-Leung Gu ◽  
Yaw-Dong Lang ◽  
Yuh-Shan Jou

Paraspeckle protein 1 (PSPC1) overexpression in cancers is known to be the pro-metastatic switch of tumor progression associated with poor prognosis of cancer patients. However, the detail molecular mechanisms to facilitate cancer cell migration remain elusive. Here, we conducted integrated analysis of human phospho-kinase antibody array, transcriptome analysis with RNA-seq, and proteomic analysis of protein pulldown to study the molecular detail of PSPC1-potentiated phenotypical transformation, adhesion, and motility in human hepatocellular carcinoma (HCC) cells. We found that PSPC1 overexpression re-assembles and augments stress fiber formations to promote recruitment of focal adhesion contacts at the protruding edge to facilitate cell migration. PSPC1 activated focal adhesion-associated kinases especially FAK/Src signaling to enhance cell adhesion and motility toward extracellular matrix (ECM). Integrated transcriptome and gene set enrichment analysis indicated that PSPC1 modulated receptor tyrosine kinase IGF1R involved in the focal adhesion pathway and induction of diverse integrins expression. Knockdown IGF1R expression and treatment of IGF1R inhibitor suppressed PSPC1-induced cell motility. Interestingly, knockdown PSPC1-interacted paraspeckle components including NONO, FUS, and the lncRNA Neat1 abolished PSPC1-activated IGF1R expression. Together, PSPC1 overexpression induced focal adhesion formation and facilitated cell motility via activation of IGF1R signaling. PSPC1 overexpression in tumors could be a potential biomarker of target therapy with IGF1R inhibitor for improvement of HCC therapy.


2020 ◽  
Vol 21 (3) ◽  
pp. 1058
Author(s):  
Akane Yamagishi ◽  
Yuki Ikeda ◽  
Masayoshi Ikeuchi ◽  
Ryuzaburo Yuki ◽  
Youhei Saito ◽  
...  

The insulin-like growth factor 1 receptor (IGF1R) is a receptor-type tyrosine kinase that transduces signals related to cell proliferation, differentiation, and survival. IGF1R expression is often misregulated in tumor cells, but the relevance of this for cancer progression remains unclear. Here, we examined the impact of IGF1R inhibition on cell division. We found that siRNA-mediated knockdown of IGF1R from HeLa S3 cells leads to M-phase delays. Although IGF1R depletion causes partial exclusion of FoxM1 from the nucleus, quantitative real-time PCR revealed that the transcription of M-phase regulators is not affected by decreased levels of IGF1R. Moreover, a similar delay in M phase was observed following 2 h of incubation with the IGF1R inhibitors OSI-906 and NVP-ADW742. These results suggest that the M-phase delay observed in IGF1R-compromised cells is not caused by altered expression of mitotic regulators. Live-cell imaging revealed that both prolonged prometaphase and prolonged metaphase underlie the delay and this can be abrogated by the inhibition of Mps1 with AZ3146, suggesting activation of the Spindle Assembly Checkpoint when IGF1R is inhibited. Furthermore, incubation with the Aurora B inhibitor ZM447439 potentiated the IGF1R inhibitor-induced suppression of cell proliferation, opening up new possibilities for more effective cancer chemotherapy.


2019 ◽  
Vol 8 (6) ◽  
pp. 680-690 ◽  
Author(s):  
Giulia Bresciani ◽  
Angeliki Ditsiou ◽  
Chiara Cilibrasi ◽  
Viviana Vella ◽  
Federico Rea ◽  
...  

Broncho-pulmonary neuroendocrine neoplasms (BP-NENs) are neoplasms orphan of an efficient therapy. Available medical treatments derived from clinical trials are not specific for the management of this malignancy. Sunitinib is a multi-receptor tyrosine-kinases (RTKs) inhibitor that has already shown its efficacy in NENs, but there are no available data about its action in BP-NENs. Therefore, our aim was to understand the effects of RTKs inhibition promoted by sunitinib in order to evaluate new putative targets useful in malignancy treatment. Since our results underlined a role for EGFR and IGF1R in modulating sunitinib antiproliferative action, we investigated the effects of erlotinib, an EGFR inhibitor, and linsitinib, an IGF1R inhibitor, in order to understand their function in regulating cells behaviour. Cell viability and caspase activation were evaluated on two immortalised human BP-NEN cell lines and primary cultures. Our results showed that after treatment with sunitinib and/or IGF1, EGF and VEGF, the antiproliferative effect of sunitinib was counteracted by EGF and IGF1 but not by VEGF. Therefore, we evaluated with AlphaScreen technology the phosphorylated EGFR and IGF1R levels in primary cultures treated with sunitinib and/or EGF and IGF1. Results showed a decrease of p-IGF1R after treatment with sunitinib and an increase after co-treatment with IGF1. Then, we assessed cell viability and caspase activation on BP-NEN cell lines after treatment with linsitinib and/or erlotinib. Results demonstrate that these two agents have a stronger antiproliferative effect compared to sunitinib. In conclusion, our results suggest that IGF1R and EGF1R could represent putative molecular targets in BP-NENs treatment.


2019 ◽  
Vol 8 (5) ◽  
pp. 577 ◽  
Author(s):  
Rossella Cannarella ◽  
Iva Arato ◽  
Rosita A. Condorelli ◽  
Giovanni Luca ◽  
Federica Barbagallo ◽  
...  

Experimental evidence has shown that the IGF1 receptor (IGF1R) is involved in testicular development during embryogenesis. More recently, data gathered from mice granulosa cells and zebrafish spermatogonia suggest that IGF1R has a role in Follicle-stimulating hormone (FSH) signaling. No evidence has been reported on this matter in Sertoli cells (SCs) so far. The aim of the study was to evaluate the role, if any, of the IGF1R in FSH signaling in SCs. The effects of FSH exposure on myosin-phosphatase 1 (MYPT1), ERK 1/2, AKT308, AKT473, c-Jun N-terminal kinase (JNK) phosphorylation and on anti-Müllerian hormone (AMH), inhibin B and FSH receptor (FSHR) mRNA levels were assessed with and without the IGF1R inhibitor NVP-AEW541 in purified and functional porcine neonatal SCs. Pre-treatment with NVP-AEW541 inhibited the FSH-induced MYPT1 and ERK 1/2 phosphorylation, decreased the FSH-dependent Protein kinase B (AKT)308 phosphorylation, but did not affect the FSH-induced AKT473 and JNK phosphorylation rate. It also interfered with the FSH-induced AMH and FSHR down-regulation. No influence was observed on the FSH-stimulated Inhibin B gene expression. Conclusion. These findings support the role of theIGF1R in FSH signaling in porcine SCs. The possible influence of IGF1 stimulation on the FSH-mediated effects on SCs should be further explored.


Sign in / Sign up

Export Citation Format

Share Document