scholarly journals Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan.

1994 ◽  
Vol 269 (48) ◽  
pp. 30081-30084 ◽  
Author(s):  
P.A. McCourt ◽  
B Ek ◽  
N Forsberg ◽  
S Gustafson
1992 ◽  
Vol 118 (5) ◽  
pp. 1223-1234 ◽  
Author(s):  
O Carpén ◽  
P Pallai ◽  
D E Staunton ◽  
T A Springer

We have studied the cytoskeletal association of intercellular adhesion molecule-1 (ICAM-1, CD54), an integral membrane protein that functions as a counterreceptor for leukocyte integrins (CD11/CD18). A linkage between ICAM-1 and cytoskeletal elements was suggested by studies showing a different ICAM-1 staining pattern for COS cells transfected with wild-type ICAM-1 or with an ICAM-1 construct that replaces the cytoplasmic and transmembrane domains of ICAM-1 with a glycophosphatidylinositol (GPI) anchor. Wild-type ICAM-1 appeared to localize most prominently in microvilli whereas GPI-ICAM-1 demonstrated a uniform cell surface distribution. Disruption of microfilaments with cytochalasin B (CCB) changed the localization of wild-type ICAM-1 but had no effect on GPI-ICAM-1. Some B-cell lines demonstrated a prominent accumulation of ICAM-1 into the uropod region whereas other cell surface proteins examined were not preferentially localized. CCB also induced redistribution of ICAM-1 in these cells. For characterization of cytoskeletal proteins interacting with ICAM-1, a 28-residue peptide that encompasses the entire predicted cytoplasmic domain (ICAM-1,478-505) was synthesized, coupled to Sepharose-4B, and used as an affinity matrix. One of the most predominant proteins eluted either with soluble ICAM-1,478-505-peptide or EDTA, was 100 kD, had a pI of 5.5, and in Western blots reacted with alpha-actinin antibodies. A direct association between alpha-actinin and ICAM-1 was demonstrated by binding of purified alpha-actinin to ICAM-1,478-505-peptide and to immunoaffinity purified ICAM-1 and by a strict colocalization of ICAM-1 with alpha-actinin, but not with the cytoskeletal proteins talin, tensin, and vinculin. The region of ICAM-1,478-505 interacting with alpha-actinin was mapped to the area close to the membrane spanning region. This region contains several positively charged residues and appears to mediate a charged interaction with alpha-actinin which is not highly dependent on the order of the residues.


1997 ◽  
Vol 8 (3) ◽  
pp. 501-515 ◽  
Author(s):  
K L Fisher ◽  
J Lu ◽  
L Riddle ◽  
K J Kim ◽  
L G Presta ◽  
...  

Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1.


2005 ◽  
Vol 73 (10) ◽  
pp. 6493-6498 ◽  
Author(s):  
Justin Thornton ◽  
Larry S. McDaniel

ABSTRACT Pneumolysin (PLY) is a major virulence factor of Streptococcus pneumoniae that elicits a variety of proinflammatory responses from cells of the host immune system. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli in extravascular sites. In this study, we evaluated the effect of PLY on expression of ICAM-1 in THP-1 monocytic cells exposed to S. pneumoniae. Exposure of cells to PLY-expressing S. pneumoniae strain WU2 for 6 h led to significantly higher levels of ICAM-1 message than those in cells exposed to either medium alone or ΔPLY1, a PLY-negative isogenic mutant of WU2. Cells exposed to purified recombinant PLY also showed a dose-dependent increase in ICAM-1 mRNA compared to cells exposed to medium alone. Exposure to recombinant PLY containing a single amino acid substitution (Trp433→Phe) that decreases cytolytic activity did not increase ICAM-1 mRNA to levels seen with wild-type PLY. In addition, THP-1 cells exposed to wild-type strain WU2 or D39 had increased ICAM-1 on their surface compared to cells exposed to medium alone or their PLY-negative isogenic mutants ΔPLY1 and ΔPLY2, respectively. These data indicate that PLY induces transcription and production of a cell adhesion molecule involved in the inflammatory response that may play a role in pneumococcal infection.


1995 ◽  
Vol 108 (9) ◽  
pp. 3119-3126 ◽  
Author(s):  
J.A. Varner

Constitutive, stable intercellular adhesion is one of the distinguishing properties of metazoans, of which the sponges (Phylum Porifera) are the most primitive representatives. In sponges, intercellular adhesion is mediated by the large proteoglycan-like cell agglutinating molecule ‘aggregation factor’, which binds to cell surfaces via an oligosaccharide moiety. Previous studies indicated that this aggregation factor binds to two proteins associated with the surface of sponge cells. One of these, a 68 kDa peripheral membrane protein, was isolated by affinity chromatography on aggregation factor conjugated to Sepharose. This monomeric 68 kDa glycoprotein plays a key role in sponge cell adhesion since it potently inhibits the binding of aggregation factor to cell surfaces and completely prevents aggregation factor-mediated cell adhesion. The 68 kDa aggregation factor ligand binds with high affinity to both aggregation factor (KD = 2 × 10(−9) M) and cell surfaces (KD = 6 × 10(−8) M) providing evidence that it serves as an intramolecular bridge between the aggregation factor molecule and a cell surface receptor. Therefore, this early metazoan protein may represent one of the earliest extracellular matrix adhesion proteins to have arisen in the course of metazoan evolution.


1995 ◽  
Vol 182 (5) ◽  
pp. 1231-1241 ◽  
Author(s):  
J Miller ◽  
R Knorr ◽  
M Ferrone ◽  
R Houdei ◽  
C P Carron ◽  
...  

Intercellular adhesion molecule-1 (ICAM-1, CD54) is a ligand for the integrins lymphocyte function associated-1 (LFA-1, CD11a/CD18) and complement receptor-3 (Mac-1, CD11b/CD18) making it an important participant in many immune and inflammatory processes. Modified recombinant soluble ICAM-1 formed dimers. This result indicated that the ectodomain of ICAM-1 contains homophilic interaction sites. Soluble ICAM-1 dimers bind to solid-phase purified LFA-1 with high avidity (dissociation constant [Kd] = 8 nM) in contrast to soluble ICAM-1 monomers whose binding was not measurable. Cell surface ICAM-1 was found to be dimeric based on two distinct criteria. First, a monoclonal antibody specific for monomeric soluble ICAM-1, CA7, binds normal ICAM-1 poorly at the cell surface; this antibody, however, binds strongly to two mutant forms of ICAM-1 when expressed at the cell surface, thus identifying elements required for dimer formation. Second, chemical cross-linking of cell surface ICAM-1 on transfected cells and tumor necrosis factor-activated endothelial cells results in conversion of a portion of ICAM-1 to a covalent dimer. Cell surface ICAM-1 dimers are more potent ligands for LFA-1-dependent adhesion than ICAM-1 monomers. While many extracellular matrix-associated ligands of integrins are multimeric, this is the first evidence of specific, functionally important homodimerization of a cell surface integrin ligand.


Sign in / Sign up

Export Citation Format

Share Document