scholarly journals A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae.

1993 ◽  
Vol 268 (10) ◽  
pp. 7442-7448 ◽  
Author(s):  
J. Chen ◽  
D.S. Pederson
1994 ◽  
Vol 14 (1) ◽  
pp. 189-199
Author(s):  
D S Pederson ◽  
T Fidrych

After each round of replication, new transcription initiation complexes must assemble on promoter DNA. This process may compete with packaging of the same promoter sequences into nucleosomes. To elucidate interactions between regulatory transcription factors and nucleosomes on newly replicated DNA, we asked whether heat shock factor (HSF) could be made to bind to nucleosomal DNA in vivo. A heat shock element (HSE) was embedded at either of two different sites within a DNA segment that directs the formation of a stable, positioned nucleosome. The resulting DNA segments were coupled to a reporter gene and transfected into the yeast Saccharomyces cerevisiae. Transcription from these two plasmid constructions after induction by heat shock was similar in amount to that from a control plasmid in which HSF binds to nucleosome-free DNA. High-resolution genomic footprint mapping of DNase I and micrococcal nuclease cleavage sites indicated that the HSE in these two plasmids was, nevertheless, packaged in a nucleosome. The inclusion of HSE sequences within (but relatively close to the edge of) the nucleosome did not alter the position of the nucleosome which formed with the parental DNA fragment. Genomic footprint analyses also suggested that the HSE-containing nucleosome was unchanged by the induction of transcription. Quantitative comparisons with control plasmids ruled out the possibility that HSF was bound only to a small fraction of molecules that might have escaped nucleosome assembly. Analysis of the helical orientation of HSE DNA in the nucleosome indicated that HSF contacted DNA residues that faced outward from the histone octamer. We discuss the significance of these results with regard to the role of nucleosomes in inhibiting transcription and the normal occurrence of nucleosome-free regions in promoters.


1987 ◽  
Vol 7 (5) ◽  
pp. 1906-1916
Author(s):  
M R Slater ◽  
E A Craig

The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the initiation region. The promoter region of YG100 contains multiple elements related to the Drosophila melanogaster heat shock element (HSE; CnnGAAnnT TCnnG). Deletion of a proximal promoter region containing one element, HSE2, eliminated most of the heat-inducible expression of YG100. The upstream activation site (UAS) of the yeast cytochrome c gene (CYC1) can be substituted by a single copy of HSE2 plus its adjoining nucleotides (UASHS). This hybrid promoter displayed a substantial level of expression before heat shock, and the level of expression was elevated eightfold by heat shock. YG100 sequences that flank UASHS inhibited basal expression of UASHS in the hybrid promoter but not its heat-inducible expression. This inhibition of basal UASHS activity suggests that negative regulation is involved in modulating expression of this yeast heat shock gene.


1987 ◽  
Vol 7 (5) ◽  
pp. 1906-1916 ◽  
Author(s):  
M R Slater ◽  
E A Craig

The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the initiation region. The promoter region of YG100 contains multiple elements related to the Drosophila melanogaster heat shock element (HSE; CnnGAAnnT TCnnG). Deletion of a proximal promoter region containing one element, HSE2, eliminated most of the heat-inducible expression of YG100. The upstream activation site (UAS) of the yeast cytochrome c gene (CYC1) can be substituted by a single copy of HSE2 plus its adjoining nucleotides (UASHS). This hybrid promoter displayed a substantial level of expression before heat shock, and the level of expression was elevated eightfold by heat shock. YG100 sequences that flank UASHS inhibited basal expression of UASHS in the hybrid promoter but not its heat-inducible expression. This inhibition of basal UASHS activity suggests that negative regulation is involved in modulating expression of this yeast heat shock gene.


1994 ◽  
Vol 14 (1) ◽  
pp. 189-199 ◽  
Author(s):  
D S Pederson ◽  
T Fidrych

After each round of replication, new transcription initiation complexes must assemble on promoter DNA. This process may compete with packaging of the same promoter sequences into nucleosomes. To elucidate interactions between regulatory transcription factors and nucleosomes on newly replicated DNA, we asked whether heat shock factor (HSF) could be made to bind to nucleosomal DNA in vivo. A heat shock element (HSE) was embedded at either of two different sites within a DNA segment that directs the formation of a stable, positioned nucleosome. The resulting DNA segments were coupled to a reporter gene and transfected into the yeast Saccharomyces cerevisiae. Transcription from these two plasmid constructions after induction by heat shock was similar in amount to that from a control plasmid in which HSF binds to nucleosome-free DNA. High-resolution genomic footprint mapping of DNase I and micrococcal nuclease cleavage sites indicated that the HSE in these two plasmids was, nevertheless, packaged in a nucleosome. The inclusion of HSE sequences within (but relatively close to the edge of) the nucleosome did not alter the position of the nucleosome which formed with the parental DNA fragment. Genomic footprint analyses also suggested that the HSE-containing nucleosome was unchanged by the induction of transcription. Quantitative comparisons with control plasmids ruled out the possibility that HSF was bound only to a small fraction of molecules that might have escaped nucleosome assembly. Analysis of the helical orientation of HSE DNA in the nucleosome indicated that HSF contacted DNA residues that faced outward from the histone octamer. We discuss the significance of these results with regard to the role of nucleosomes in inhibiting transcription and the normal occurrence of nucleosome-free regions in promoters.


1993 ◽  
Vol 13 (1) ◽  
pp. 248-256
Author(s):  
N Kobayashi ◽  
K McEntee

The stress-responsive DDR2 gene (previously called DDRA2) of Saccharomyces cerevisiae is transcribed at elevated levels following stress caused by heat shock or DNA damage. Previously, we identified a 51-bp promoter fragment, oligo31/32, which conferred heat shock inducibility on the heterologous CYC1-lacZ reporter gene in S. cerevisiae (N. Kobayashi and K. McEntee, Proc. Natl. Acad. Sci. USA 87:6550-6554, 1990). Using a series of synthetic oligonucleotides, we have identified a pentanucleotide, CCCCT (C4T), as an essential component of this stress response sequence. This element is not a binding site for the well-characterized heat shock transcription factor which recognizes a distinct cis-acting heat shock element in the promoters of many heat shock genes. Here we demonstrate the ability of oligonucleotides containing the C4T sequence to confer heat shock inducibility on the reporter gene and show that the presence of two such elements produces more than additive effects on induction. Gel retardation experiments have been used to demonstrate specific complex formation between C4T-containing fragments and one or more yeast proteins. Formation of these complexes was not competed by fragments containing mutations in the C4T sequence nor by heat shock element-containing competitor DNAs. Fragments containing the C4T element bound to a single 140-kDa polypeptide, distinct from heat shock transcription factors in yeast crude extracts. These experiments identify key cis- and trans-acting components of a novel heat shock stress response pathway in S. cerevisiae.


2011 ◽  
Vol 78 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Chiemi Noguchi ◽  
Daisuke Watanabe ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
Hitoshi Shimoi

ABSTRACTModern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p inSaccharomyces cerevisiaesake yeast. The HSE-lacZactivity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. SinceHSF1allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entirePPT1gene locus. We confirmed that the expression of laboratory yeast-derived functionalPPT1recovered the HSE-mediated stress response of sake yeast. In addition, deletion ofPPT1in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of thePPT1gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.


1995 ◽  
Vol 15 (12) ◽  
pp. 6754-6769 ◽  
Author(s):  
C Szent-Gyorgyi

Although key genetic regulators of early meiotic transcription in Saccharomyces cerevisiae have been well characterized, the activation of meiotic genes is still poorly understood in terms of cis-acting DNA elements and their associated factors. I report here that induction of HSP82 is regulated by the early meiotic IME1-IME2 transcriptional cascade. Vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element (HSE) with a nearby bipartite repression element, composed of the ubiquitous early meiotic motif, URS1 (upstream repression sequence 1), and a novel ancillary repression element. The ancillary repression element is required for efficient vegetative repression, is spatially separable from URS1, and continues to facilitate repression during sporulation. In contrast, URS1 also functions as a vegetative repression element but is converted early in meiosis into an HSE-dependent activation element. An early step in this transformation may be the antagonism of URS1-mediated repression by IME1. The HSE also nonspecifically supports a second major mode of meiotic activation that does not require URS1 but does require expression of IME2 and concurrent starvation. Interestingly, increased rather than decreased URS1-mediated vegetative transcription can be artificially achieved by introducing rare point mutations into URS1 or by deleting the UME6 gene. These lesions offer insight into mechanisms of URS-dependent repression and activation. Experiments suggest that URS1-bound factors functionally modulate heat shock factor during vegetative transcription and early meiotic induction but not during heat shock. The loss of repression and activation observed when the IME2 activation element, T4C, is substituted for the HSE suggests specific requirements for URS1-upstream activation sequence interactions.


1991 ◽  
Vol 11 (1) ◽  
pp. 281-288 ◽  
Author(s):  
G J Gallo ◽  
T J Schuetz ◽  
R E Kingston

The heat shock response appears to be universal. All eucaryotes studied encode a protein, heat shock factor (HSF), that is believed to regulate transcription of heat shock genes. This protein binds to a regulatory sequence, the heat shock element, that is absolutely conserved among eucaryotes. We report here the identification of HSF in the fission yeast Schizosaccharomyces pombe. HSF binding was not observed in extracts from normally growing S. pombe (28 degrees C) but was detected in increasing amounts as the temperature of heat shock increased between 39 and 45 degrees C. This regulation is in contrast to that observed in Saccharomyces cerevisiae, in which HSF binding is detectable at both normal and heat shock temperatures. The S. pombe factor bound specifically to the heat shock element, as judged by methylation interference and DNase I protection analysis. The induction of S. pombe HSF was not inhibited by cycloheximide, suggesting that induction occurs posttranslationally, and the induced factor was shown to be phosphorylated. S. pombe HSF was purified to near homogeneity and was shown to have an apparent mobility of approximately 108 kDa. Since heat-induced DNA binding by HSF had previously been demonstrated only in metazoans, the conservation of heat-induced DNA binding by HSF among S. pombe and metazoans suggests that this mode of regulation is evolutionarily ancient.


1990 ◽  
Vol 10 (4) ◽  
pp. 1622-1632 ◽  
Author(s):  
D E Stone ◽  
E A Craig

To determine whether the 70-kilodalton heat shock proteins of Saccharomyces cerevisiae play a role in regulating their own synthesis, we studied the effect of overexpressing the SSA1 protein on the activity of the SSA1 5'-regulatory region. The constitutive level of Ssa1p was increased by fusing the SSA1 structural gene to the GAL1 promoter. A reporter vector consisting of an SSA1-lacZ translational fusion was used to assess SSA1 promoter activity. In a strain producing approximately 10-fold the normal heat shock level of Ssa1p, induction of beta-galactosidase activity by heat shock was almost entirely blocked. Expression of a transcriptional fusion vector in which the CYC1 upstream activating sequence of a CYC1-lacZ chimera was replaced by a sequence containing a heat shock upstream activating sequence (heat shock element 2) from the 5'-regulatory region of SSA1 was inhibited by excess Ssa1p. The repression of an SSA1 upstream activating sequence by the SSA1 protein indicates that SSA1 self-regulation is at least partially mediated at the transcriptional level. The expression of another transcriptional fusion vector, containing heat shock element 2 and a lesser amount of flanking sequence, is not inhibited when Ssa1p is overexpressed. This suggests the existence of an element, proximal to or overlapping heat shock element 2, that confers sensitivity to the SSA1 protein.


Sign in / Sign up

Export Citation Format

Share Document