scholarly journals Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

2011 ◽  
Vol 78 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Chiemi Noguchi ◽  
Daisuke Watanabe ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
Hitoshi Shimoi

ABSTRACTModern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p inSaccharomyces cerevisiaesake yeast. The HSE-lacZactivity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. SinceHSF1allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entirePPT1gene locus. We confirmed that the expression of laboratory yeast-derived functionalPPT1recovered the HSE-mediated stress response of sake yeast. In addition, deletion ofPPT1in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of thePPT1gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

2012 ◽  
Vol 78 (11) ◽  
pp. 4008-4016 ◽  
Author(s):  
Daisuke Watanabe ◽  
Yuya Araki ◽  
Yan Zhou ◽  
Naoki Maeya ◽  
Takeshi Akao ◽  
...  

ABSTRACTSake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program inSaccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-lengthRIM15gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G1arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functionalRIM15gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in theRIM15gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.


1993 ◽  
Vol 13 (1) ◽  
pp. 248-256
Author(s):  
N Kobayashi ◽  
K McEntee

The stress-responsive DDR2 gene (previously called DDRA2) of Saccharomyces cerevisiae is transcribed at elevated levels following stress caused by heat shock or DNA damage. Previously, we identified a 51-bp promoter fragment, oligo31/32, which conferred heat shock inducibility on the heterologous CYC1-lacZ reporter gene in S. cerevisiae (N. Kobayashi and K. McEntee, Proc. Natl. Acad. Sci. USA 87:6550-6554, 1990). Using a series of synthetic oligonucleotides, we have identified a pentanucleotide, CCCCT (C4T), as an essential component of this stress response sequence. This element is not a binding site for the well-characterized heat shock transcription factor which recognizes a distinct cis-acting heat shock element in the promoters of many heat shock genes. Here we demonstrate the ability of oligonucleotides containing the C4T sequence to confer heat shock inducibility on the reporter gene and show that the presence of two such elements produces more than additive effects on induction. Gel retardation experiments have been used to demonstrate specific complex formation between C4T-containing fragments and one or more yeast proteins. Formation of these complexes was not competed by fragments containing mutations in the C4T sequence nor by heat shock element-containing competitor DNAs. Fragments containing the C4T element bound to a single 140-kDa polypeptide, distinct from heat shock transcription factors in yeast crude extracts. These experiments identify key cis- and trans-acting components of a novel heat shock stress response pathway in S. cerevisiae.


1993 ◽  
Vol 13 (1) ◽  
pp. 248-256 ◽  
Author(s):  
N Kobayashi ◽  
K McEntee

The stress-responsive DDR2 gene (previously called DDRA2) of Saccharomyces cerevisiae is transcribed at elevated levels following stress caused by heat shock or DNA damage. Previously, we identified a 51-bp promoter fragment, oligo31/32, which conferred heat shock inducibility on the heterologous CYC1-lacZ reporter gene in S. cerevisiae (N. Kobayashi and K. McEntee, Proc. Natl. Acad. Sci. USA 87:6550-6554, 1990). Using a series of synthetic oligonucleotides, we have identified a pentanucleotide, CCCCT (C4T), as an essential component of this stress response sequence. This element is not a binding site for the well-characterized heat shock transcription factor which recognizes a distinct cis-acting heat shock element in the promoters of many heat shock genes. Here we demonstrate the ability of oligonucleotides containing the C4T sequence to confer heat shock inducibility on the reporter gene and show that the presence of two such elements produces more than additive effects on induction. Gel retardation experiments have been used to demonstrate specific complex formation between C4T-containing fragments and one or more yeast proteins. Formation of these complexes was not competed by fragments containing mutations in the C4T sequence nor by heat shock element-containing competitor DNAs. Fragments containing the C4T element bound to a single 140-kDa polypeptide, distinct from heat shock transcription factors in yeast crude extracts. These experiments identify key cis- and trans-acting components of a novel heat shock stress response pathway in S. cerevisiae.


1994 ◽  
Vol 14 (1) ◽  
pp. 189-199
Author(s):  
D S Pederson ◽  
T Fidrych

After each round of replication, new transcription initiation complexes must assemble on promoter DNA. This process may compete with packaging of the same promoter sequences into nucleosomes. To elucidate interactions between regulatory transcription factors and nucleosomes on newly replicated DNA, we asked whether heat shock factor (HSF) could be made to bind to nucleosomal DNA in vivo. A heat shock element (HSE) was embedded at either of two different sites within a DNA segment that directs the formation of a stable, positioned nucleosome. The resulting DNA segments were coupled to a reporter gene and transfected into the yeast Saccharomyces cerevisiae. Transcription from these two plasmid constructions after induction by heat shock was similar in amount to that from a control plasmid in which HSF binds to nucleosome-free DNA. High-resolution genomic footprint mapping of DNase I and micrococcal nuclease cleavage sites indicated that the HSE in these two plasmids was, nevertheless, packaged in a nucleosome. The inclusion of HSE sequences within (but relatively close to the edge of) the nucleosome did not alter the position of the nucleosome which formed with the parental DNA fragment. Genomic footprint analyses also suggested that the HSE-containing nucleosome was unchanged by the induction of transcription. Quantitative comparisons with control plasmids ruled out the possibility that HSF was bound only to a small fraction of molecules that might have escaped nucleosome assembly. Analysis of the helical orientation of HSE DNA in the nucleosome indicated that HSF contacted DNA residues that faced outward from the histone octamer. We discuss the significance of these results with regard to the role of nucleosomes in inhibiting transcription and the normal occurrence of nucleosome-free regions in promoters.


2021 ◽  
pp. mbc.E20-11-0715
Author(s):  
Amanda I. Bradley ◽  
Nicole M. Marsh ◽  
Heather R. Borror ◽  
Kaitlyn E. Mostoller ◽  
Amber I. Gama ◽  
...  

Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the post-translational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae . We found that cells exhibit a transient sumoylation response after acute exposure to ≤ 7.5% ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin-structural proteins.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


1987 ◽  
Vol 7 (5) ◽  
pp. 1906-1916
Author(s):  
M R Slater ◽  
E A Craig

The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the initiation region. The promoter region of YG100 contains multiple elements related to the Drosophila melanogaster heat shock element (HSE; CnnGAAnnT TCnnG). Deletion of a proximal promoter region containing one element, HSE2, eliminated most of the heat-inducible expression of YG100. The upstream activation site (UAS) of the yeast cytochrome c gene (CYC1) can be substituted by a single copy of HSE2 plus its adjoining nucleotides (UASHS). This hybrid promoter displayed a substantial level of expression before heat shock, and the level of expression was elevated eightfold by heat shock. YG100 sequences that flank UASHS inhibited basal expression of UASHS in the hybrid promoter but not its heat-inducible expression. This inhibition of basal UASHS activity suggests that negative regulation is involved in modulating expression of this yeast heat shock gene.


2019 ◽  
Vol 203 ◽  
pp. 103377 ◽  
Author(s):  
Ruoyun Li ◽  
Yingjie Miao ◽  
Shukun Yuan ◽  
Yingdi Li ◽  
Zufang Wu ◽  
...  

Author(s):  
Sae Kato ◽  
Masashi Yoshida ◽  
Shingo Izawa

Abstract Saccharomyces cerevisiae shows similar responses to heat shock and ethanol stress. Cells treated with severe ethanol stress activate the transcription of HSP genes and cause the aggregation of Hsp104-GFP, implying that severe ethanol stress as well as heat shock causes the accumulation of denatured proteins in yeast cells. However, there is currently no concrete evidence to show that severe ethanol stress causes protein denaturation in living yeast cells. In the present study, we investigated whether severe ethanol stress causes protein denaturation, and confirmed that a treatment with 10% (v/v) ethanol stress resulted in the accumulation of insoluble proteins and ubiquitinated proteins in yeast cells. We also found that increased denatured protein levels were efficiently reduced by the ubiquitin-proteasome system after the elimination of ethanol. Since our previous findings demonstrated that the expression of Btn2 was induced by severe ethanol stress, we herein examined the importance of Btn2 in protein quality control in cells treated with severe ethanol stress. btn2∆ cells showed a significant delay in the clearance of denatured proteins during the recovery process. These results provide further insights into the effects of severe ethanol on yeast proteostasis and the contribution of Btn2 to the efficient clearance of denatured proteins.


mSystems ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Iwona B. Wenderska ◽  
Andrew Latos ◽  
Benjamin Pruitt ◽  
Sara Palmer ◽  
Grace Spatafora ◽  
...  

ABSTRACT Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans. In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans.


Sign in / Sign up

Export Citation Format

Share Document