scholarly journals Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein.

1988 ◽  
Vol 263 (7) ◽  
pp. 3307-3313
Author(s):  
B M Merrill ◽  
K L Stone ◽  
F Cobianchi ◽  
S H Wilson ◽  
K R Williams
1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


2021 ◽  
Vol 23 (1) ◽  
pp. 108
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955 ◽  
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


1996 ◽  
Vol 16 (4) ◽  
pp. 1425-1435 ◽  
Author(s):  
Wurtz-T ◽  
E Kiseleva ◽  
G Nacheva ◽  
A Alzhanova-Ericcson ◽  
A Rosén ◽  
...  

Balbiani ring (BR) granules are premessenger ribonucleoprotein particles (RNPs) generated in giant chromosomal puffs, the BRs, in the larval salivary glands of the dipteran chironomus tentans. Monoclonal antibodies were raised against nuclear proteins collected on a single-stranded-DNA-agarose affinity column, and two of them were used to identify RNA-binding proteins in BR granules. First, in Western blots (immunoblots), one of the antibodies recognized a 36-kDa protein and the other recognized a 45-KDa protein. Second, both antibodies bound to the BRs in immunocytological experiments. It was shown in cross-linking experiments that the two proteins are associated with heterogeneous nuclear RNP (hnRNP) complexes extracted from C. tentans nuclei. By immunoelectron microscopy of isolated and partly unfolded BR RNPs, it was specifically demonstrated that the BR granules contain the two proteins and, in addition, that both proteins are distributed frequently along the RNP fiber of the particles. Thus, the 36- and 45-KDa proteins are likely to be abundant, RNA-binding proteins in the BR particles. To elucidate to what extent the two proteins are also present in other hnRNPs, we studied the binding of the antibodies to chromosomal puffs in general. It was observed that many puffs in addition to the BRs harbor the two proteins, but there are also puffs containing only one of the components, either the 36- or the 45-kDa protein. We conclude that the two proteins are not randomly bound to all hnRNPs but that each of them seems to be linked to a specific subset of the particles.


2018 ◽  
Author(s):  
Ahmed M. Malik ◽  
Roberto A. Miguez ◽  
Xingli Li ◽  
Ye-Shih Ho ◽  
Eva L. Feldman ◽  
...  

ABSTRACTAbnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3’s zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on neuronal survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.


Sign in / Sign up

Export Citation Format

Share Document