scholarly journals cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurence of tissue-specific alternative splicing

1993 ◽  
Vol 21 (17) ◽  
pp. 3981-3987 ◽  
Author(s):  
Tetsuro Hirose ◽  
Mamoru Sugita ◽  
Masahiro Sugiura
2007 ◽  
Vol 27 (24) ◽  
pp. 8612-8621 ◽  
Author(s):  
Hidehito Kuroyanagi ◽  
Genta Ohno ◽  
Shohei Mitani ◽  
Masatoshi Hagiwara

ABSTRACT Many pre-mRNAs are alternatively spliced in a tissue-specific manner in multicellular organisms. The Fox-1 family of RNA-binding proteins regulate alternative splicing by either activating or repressing exon inclusion through specific binding to UGCAUG stretches. However, the precise cellular contexts that determine the action of the Fox-1 family in vivo remain to be elucidated. We have recently demonstrated that ASD-1 and FOX-1, members of the Fox-1 family in Caenorhabditis elegans, regulate tissue-specific alternative splicing of the fibroblast growth factor receptor gene, egl-15, which eventually determines the ligand specificity of the receptor in vivo. Here we report that another RNA-binding protein, SUP-12, coregulates the egl-15 alternative splicing. By screening for mutants defective in the muscle-specific expression of our alternative splicing reporter, we identified the muscle-specific RNA-binding protein SUP-12. We identified juxtaposed conserved stretches as the cis elements responsible for the regulation. The Fox-1 family and the SUP-12 proteins form a stable complex with egl-15 RNA, depending on the cis elements. Furthermore, the asd-1; sup-12 double mutant is defective in sex myoblast migration, phenocopying the isoform-specific egl-15(5A) mutant. These results establish an in vivo model that coordination of the two families of RNA-binding proteins regulates tissue-specific alternative splicing of a specific target gene.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955 ◽  
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoaki Yanaizu ◽  
Chika Washizu ◽  
Nobuyuki Nukina ◽  
Jun-ichi Satoh ◽  
Yoshihiro Kino

Abstract Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


Sign in / Sign up

Export Citation Format

Share Document