scholarly journals Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues.

1990 ◽  
Vol 265 (15) ◽  
pp. 8519-8524
Author(s):  
T Mizuochi ◽  
T J Matthews ◽  
M Kato ◽  
J Hamako ◽  
K Titani ◽  
...  
1988 ◽  
Vol 254 (2) ◽  
pp. 599-603 ◽  
Author(s):  
T Mizuochi ◽  
M W Spellman ◽  
M Larkin ◽  
J Solomon ◽  
L J Basa ◽  
...  

The present paper describes the structures of the N-linked oligosaccharides of the human-immunodeficiency-virus (HIV) envelope glycoprotein gp120 (cloned from the HTLV-III B isolate and expressed as a secreted fusion protein after transfection of Chinese-hamster ovary cells), which is known to bind with high affinity to human T4-lymphocytes. Oligosaccharides were released from peptide by hydrazinolysis, fractionated by paper electrophoresis, high-performance lectin-affinity chromatography and Bio-Gel P-4 column chromatography, and their structures determined by sequential exoglycosidase digestions in conjunction with methylation analysis. The glycoprotein was found to be unique in its diversity of oligosaccharide structures. These include high-mannose type and hybrid type, as well as four categories of complex-type chains: mono-, bi-, tri- and tetra-antennary, with or without N-acetyl-lactosamine repeats, and with or without a core-region fucose residue. Among the sialidase-treated oligosaccharides, no less than 29 structures were identified as follows: (formula; see text) where G is galactose, GN is N-acetylglucosamine, M is mannose, F is fucose, and ‘+/- ’ means that residues are present in a proportion of chains. The actual number of oligosaccharide structures is much greater, since before desialylation there was evidence that, among the hybrid and complex-type chains, all but 6% contained sialic acid at the C-3 position of terminal galactose residues, and partially sialylated forms of the bi- and multi-antennary chains were present. Detailed evidence for the proposed oligosaccharide sequences will be published as a supplementary paper [T. Mizuochi, M. W. Spellman, M. Larkin, J. Solomon, L. J. Basa & T. Feizi (1988) Biomed. Chromatogr., in the press].


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 437-445 ◽  
Author(s):  
PM Cannon ◽  
DG Tenen ◽  
MB Feinberg ◽  
HS Shin ◽  
S Kim

Abstract As a model system to study the infection of early myeloid cells by human immunodeficiency virus-1 (HIV-1), we have infected the human promyelocytic cell line, HL-60, with a recombinant selectable HIV-1 clone. A fully infected population showed a relatively high frequency of low-level infection, with 40% of subcloned cells being negative by reverse transcriptase and p24 indirect immunofluorescence analysis and displaying only low levels of supernatant p24. The same treatment of a T-lymphoid cell line produced 100% productive infections. HIV-1 infection of HL-60 did not appear to alter the state of differentiation of the cells, as assessed by surface antigen expression, regardless of the level of viral expression. Furthermore, infected cells were able to respond normally to chemical inducers of differentiation. Induction of differentiation towards monocyte/macrophages by phorbol myristate acetate activated the HIV-1 long terminal repeat in a transient transfection system, and there was a corresponding increase in viral production from the infected subclones. Granulocytic differentiation, as stimulated by dimethyl sulfoxide or retinoic acid, had no effect on long terminal repeat activity and did not stimulate viral replication. These data suggest that low-level HIV-1 infections may be established at a relatively high frequency in myeloid precursor cells, and that different pathways of promyelocytic differentiation vary in their ability to stimulate HIV-1 replication.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 437-445
Author(s):  
PM Cannon ◽  
DG Tenen ◽  
MB Feinberg ◽  
HS Shin ◽  
S Kim

As a model system to study the infection of early myeloid cells by human immunodeficiency virus-1 (HIV-1), we have infected the human promyelocytic cell line, HL-60, with a recombinant selectable HIV-1 clone. A fully infected population showed a relatively high frequency of low-level infection, with 40% of subcloned cells being negative by reverse transcriptase and p24 indirect immunofluorescence analysis and displaying only low levels of supernatant p24. The same treatment of a T-lymphoid cell line produced 100% productive infections. HIV-1 infection of HL-60 did not appear to alter the state of differentiation of the cells, as assessed by surface antigen expression, regardless of the level of viral expression. Furthermore, infected cells were able to respond normally to chemical inducers of differentiation. Induction of differentiation towards monocyte/macrophages by phorbol myristate acetate activated the HIV-1 long terminal repeat in a transient transfection system, and there was a corresponding increase in viral production from the infected subclones. Granulocytic differentiation, as stimulated by dimethyl sulfoxide or retinoic acid, had no effect on long terminal repeat activity and did not stimulate viral replication. These data suggest that low-level HIV-1 infections may be established at a relatively high frequency in myeloid precursor cells, and that different pathways of promyelocytic differentiation vary in their ability to stimulate HIV-1 replication.


1999 ◽  
Vol 77 (8) ◽  
pp. 625-630 ◽  
Author(s):  
Simon Leung ◽  
Reina Bendayan

P-glycoprotein (P-gp), the MDR1 multidrug transporter, is known to be expressed in several human organs and tissues, including the apical membrane of the renal proximal tubular cells. It has been reported that human immunodeficiency virus 1 (HIV-1) can trigger the expression of P-gp in cultured cells (i.e., H9, a T-lymphocyte cell line, and U937, a monocyte cell line), which may render the cells resistant to antiretrovirals. Since multiple membrane transport systems (i.e., organic cation, organic anion, and nucleoside systems) can be involved in the renal tubular transport of dideoxynucleoside analog drugs (DADs) (i.e., zidovudine and zalcitabine), we have questioned if P-gp is involved in the renal transport of DADs. Chinese hamster ovary colchicine-resistant cells (CHRC5), a cell line that is well known to highly express P-gp, and continuous renal epithelial cell lines (LLC-PK1 and OK), which have also been shown to express P-gp, were used. The accumulation of [3H]vinblastine (20 nM), an established P-gp substrate, by the monolayer cells was significantly enhanced in the presence of two P-gp inhibitors (i.e., verapamil and cyclosporin A) and nucleoside transport inhibitors (i.e., dipyridamole and dilazep). In contrast, DADs (i.e., zidovudine, lamivudine, didanosine, and zalcitabine) did not significantly affect vinblastine accumulation by these cell lines. These data suggest that P-gp does not play a significant role in the renal tubular transport of DADs. Dipyridamole and dilazep, two nucleoside membrane transport inhibitors, appear to be P-gp inhibitors.Key words: P-glycoprotein, dideoxynucleoside analogs, human immunodeficiency virus 1, transport, renal.


Sign in / Sign up

Export Citation Format

Share Document