scholarly journals Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription.

1990 ◽  
Vol 265 (3) ◽  
pp. 1516-1523
Author(s):  
P S Walker ◽  
T Ramlal ◽  
V Sarabia ◽  
U M Koivisto ◽  
P J Bilan ◽  
...  
1998 ◽  
Vol 333 (3) ◽  
pp. 713-718 ◽  
Author(s):  
Zayna A. KHAYAT ◽  
Anthony L. McCALL ◽  
Amira KLIP

L6 muscle cells survive long-term (18 h) disruption of oxidative phosphorylation by the mitochondrial uncoupler 2,4-dinitrophenol (DNP) because, in response to this metabolic stress, they increase their rate of glucose transport. This response is associated with an elevation of the protein content of glucose transporter isoforms GLUT3 and GLUT1, but not GLUT4. Previously we have reported that the rise in GLUT1 expression is likely to be a result of de novo biosynthesis of the transporter, since the uncoupler increases GLUT1 mRNA levels. Unlike GLUT1, very little is known about how interfering with mitochondrial ATP production regulates GLUT3 protein expression. Here we examine the mechanisms employed by DNP to increase GLUT3 protein content and glucose uptake in L6 muscle cells. We report that, in contrast with GLUT1, continuous exposure to DNP had no effect on GLUT3 mRNA levels. DNP-stimulated glucose transport was unaffected by the protein-synthesis inhibitor cycloheximide. The increase in GLUT3 protein mediated by DNP was also insensitive to cycloheximide, paralleling the response of glucose uptake, whereas the rise in GLUT1 protein levels was blocked by the inhibitor. The GLUT3 glucose transporter may therefore provide the majority of the glucose transport stimulation by DNP, despite elevated levels of GLUT1 protein. The half-lives of GLUT3 and GLUT1 proteins in L6 myotubes were determined to be about 15 h and 6 h respectively. DNP prolonged the half-life of both proteins. After 24 h of DNP treatment, 88% of GLUT3 protein and 57% of GLUT1 protein had not turned over, compared with 25% in untreated cells. We conclude that the long-term stimulation of glucose transport by DNP arises from an elevation of GLUT3 protein content associated with an increase in GLUT3 protein half-life. These findings suggest that disruption of the oxidative chain of L6 muscle cells leads to an adaptive response of glucose transport that is distinct from the insulin response, involving specific glucose transporter isoforms that are regulated by different mechanisms.


Diabetes ◽  
1992 ◽  
Vol 41 (5) ◽  
pp. 592-597 ◽  
Author(s):  
N. Inagaki ◽  
K. Yasuda ◽  
G. Inoue ◽  
Y. Okamoto ◽  
H. Yano ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3785
Author(s):  
Sleman Kadan ◽  
Sarit Melamed ◽  
Shoshana Benvalid ◽  
Zipora Tietel ◽  
Yoel Sasson ◽  
...  

Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 μg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography–mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.


1991 ◽  
Vol 266 (4) ◽  
pp. 2615-2621 ◽  
Author(s):  
U M Koivisto ◽  
H Martinez-Valdez ◽  
P J Bilan ◽  
E Burdett ◽  
T Ramlal ◽  
...  

Thyroid ◽  
2012 ◽  
Vol 22 (7) ◽  
pp. 747-754 ◽  
Author(s):  
Silvania Silva Teixeira ◽  
Akhilesh K. Tamrakar ◽  
Francemilson Goulart-Silva ◽  
Caroline Serrano-Nascimento ◽  
Amira Klip ◽  
...  

1993 ◽  
Vol 264 (3) ◽  
pp. E319-E327 ◽  
Author(s):  
E. A. Gulve ◽  
E. J. Henriksen ◽  
K. J. Rodnick ◽  
J. H. Youn ◽  
J. O. Holloszy

It is widely thought that aging results in development of insulin resistance in skeletal muscle. In this study, we examined the effects of growth and aging on the concentration of the GLUT-4 glucose transporter and on glucose transport activity in skeletal muscles of female Long-Evans rats. Relative amounts of immunoreactive GLUT-4 protein were measured in muscle homogenates of 1-, 10-, and 25-mo-old rats by immunoblotting with a polyclonal antibody directed against GLUT-4. In the epitrochlearis, plantaris, and the red and white regions of the quadriceps muscles, GLUT-4 immunoreactivity decreased by 14-33% between 1 and 10 mo of age and thereafter remained constant. In flexor digitorum brevis (FDB) and soleus muscles, GLUT-4 concentration was similar at all three ages studied. Glucose transport activity was assessed in epitrochlearis and FDB muscles by incubation with 2-deoxyglucose under the following conditions: basal, submaximal insulin, and either maximal insulin or maximal insulin combined with contractile activity. Glucose transport in the epitrochlearis muscle decreased by approximately 60% between 1 and 4 mo of age and then did not decline further between 4 and 25 mo of age. Transport activity in the FDB assessed with a maximally effective insulin concentration decreased only slightly (< 20%) between 1 and 7 mo of age. Aging, i.e., the transition from young adulthood to old age, was not associated with a decrease in glucose transport activity in either the epitrochlearis or the FDB.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 259 (4) ◽  
pp. E593-E598 ◽  
Author(s):  
E. J. Henriksen ◽  
R. E. Bourey ◽  
K. J. Rodnick ◽  
L. Koranyi ◽  
M. A. Permutt ◽  
...  

The relationships among fiber type, glucose transporter (GLUT-4) protein content, and glucose transport activity stimulated maximally with insulin and/or contractile activity were studied by use of the rat epitrochlearis (15% type I-20% type II2a-65% type IIb), soleus (84-16-0%), extensor digitorum longus (EDL, 3-57-40%), and flexor digitorum brevis (FDB, 7-92-1%) muscles. Insulin-stimulated 2-deoxy-D-glucose (2-DG) uptake was greatest in the soleus, followed (in order) by the FDB, EDL, and epitrochlearis. On the other hand, contractile activity induced the greatest increase in 2-DG uptake in the FDB, followed by the EDL, soleus, and epitrochlearis. The effects of insulin and contractile activity on 2-DG uptake were additive in all the muscle preparations, with the relative rates being FDB greater than soleus greater than EDL greater than epitrochlearis. Quantitation of the GLUT-4 protein content with the antiserum R820 showed the following pattern: FDB greater than soleus greater than EDL greater than epitrochlearis. Linear regression analysis showed that whereas a relatively low and nonsignificant correlation existed between GLUT-4 protein content and 2-DG uptake stimulated by insulin alone, significant correlations existed between GLUT-4 protein content and 2-DG uptake stimulated either by contractions alone (r = 0.950) or by insulin and contractions in combination (r = 0.992). These results suggest that the differences in maximally stimulated glucose transport activity among the three fiber types may be related to differences in their content of GLUT-4 protein.


1995 ◽  
Vol 108 (1-2) ◽  
pp. 161-167 ◽  
Author(s):  
Mark W. Sleeman ◽  
Hong Zhou ◽  
Suzanne Rogers ◽  
Kong Wah Ng ◽  
James D. Best

1992 ◽  
Vol 281 (3) ◽  
pp. 809-817 ◽  
Author(s):  
J Yang ◽  
A E Clark ◽  
R Harrison ◽  
I J Kozka ◽  
G D Holman

We have compared the rates of insulin stimulation of cell-surface availability of glucose-transporter isoforms (GLUT1 and GLUT4) and the stimulation of 2-deoxy-D-glucose transport in 3T3-L1 cells. The levels of cell-surface transporters have been assessed by using the bismannose compound 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis(D-mannos -4-yloxy) propyl-2-amine (ATB-BMPA). At 27 degrees C the half-times for the appearance of GLUT1 and GLUT4 at the cell surface were 5.7 and 5.4 min respectively and were slightly shorter than that for the observed stimulation of transport activity (t 1/2 8.6 min). This lag may be due to a slow dissociation of surface transporters from trafficking proteins responsible for translocation. When fully-insulin-stimulated cells were subjected to a low-pH washing procedure to remove insulin at 37 degrees C, the cell-surface levels of GLUT1 and GLUT4 decreased, with half-times of 9.2 and 6.8 min respectively. These times correlated well with decrease in 2-deoxy-D-glucose transport activity that occurred during this washing procedure (t1/2 6.5 min). When fully-insulin-stimulated cells were treated with phenylarsine oxide (PAO), a similar decrease in transport activity occurred (t1/2 9.8 min). However, surface labelling showed that this corresponded with a decrease in GLUT4 only (t1/2 7.8 min). The cell-surface level of GLUT1 remained high throughout the PAO treatment. Light-microsome membranes were isolated from cells which had been cell-surface-labelled with ATB-BMPA. Internalization of both transporter isoforms to this pool occurred when cells were maintained in the presence of insulin for 60 min. In contrast with the surface-labelling results, we have shown that the transfer to the light-microsome pool of both transporters occurred in cells treated with insulin and PAO. These results suggest that both transporters are recycled by fluid-phase endocytosis and exocytosis. PAO may inhibit this recycling at a stage which involves the re-emergence of internalized transporters at the plasma membrane. The GLUT1 transporters that are recycled to the surface in insulin- and PAO-treated cells appear to have low transport activity. This may be because of a failure to dissociate fully from trafficking proteins at the cell surface. GLUT4 transporters appear to have a greater tendency to remain internalized if the normal mechanisms that commit transporters to the cell surface, such as dissociation from trafficking proteins, are uncoupled.


Sign in / Sign up

Export Citation Format

Share Document