scholarly journals Alkaline Isomerization of Oxidized Cytochrome c

1974 ◽  
Vol 249 (8) ◽  
pp. 2624-2632
Author(s):  
Linda A. Davis ◽  
Abel Schejter ◽  
George P. Hess
Biochemistry ◽  
2018 ◽  
Vol 57 (29) ◽  
pp. 4276-4288 ◽  
Author(s):  
Oliver M. Deacon ◽  
Dimitri A. Svistunenko ◽  
Geoffrey R. Moore ◽  
Michael T. Wilson ◽  
Jonathan A.R. Worrall

1975 ◽  
Vol 149 (1) ◽  
pp. 155-167 ◽  
Author(s):  
G W Pettigrew ◽  
I Aviram ◽  
A Schejter

Cytochrome c-557 from Crithidia oncopelti and cytochrome c-558 from Euglena gracilis are mitochondrial cytochromes c that have an atypical haem-binding site. It was of interest to know whether the loss of one thioether bond affected the physicochemical properties of these cytochromes. The thermodynamic parameters of the redox potential were measured. The reaction with imidazole, the kinetics and thermodynamics of the alkaline isomerization and the effect of heating on the visible spectrum are described for the ferricytochromes. The kinetics of the loss of cyanide, the spectral changes occurring on reduction with dithionite at alkaline pH values and the reactivity with CO are described for the ferrocytochromes. In many respects the cytochromes of the two protozoans are very similar to the cytochromes of horse and yeast. The ferricytochromes do, however, undergo a reversible transition to high-spin species on heating, which may be due to the more flexible attachment of the prosthetic group. Similarly the alkaline isomers of cytochromes c-557 and c-558 give rise to high-spin proteins above pH 11. The alkaline isomerization of cytochrome c-558, involves a pKobs. of 10 and kinetics which do not obey the model of Davis et al. [(1974) J. Biol. Chem.249, 2624-2632] for horse cytochrome c. It is proposed that a model involving two ionizations, followed by a conformation change, may fit the data. Both cytochromes c-557 and c-558 combine slowly with CO at neutral pH values.


1989 ◽  
Vol 258 (2) ◽  
pp. 599-605 ◽  
Author(s):  
P Tonge ◽  
G R Moore ◽  
C W Wharton

The alkaline transitions of tuna and horse ferricytochromes c and the trifluoroacetyl-lysine derivative of horse ferricytochrome c have been studied by Fourier-transform (FT) i.r. spectroscopy. The spectral perturbations resulting from the transition have been interpreted by reference to FT i.r. data on simple carboxylic-acid-containing compounds and a bacterial cytochrome c551 in which a haem propionate ionizes without causing a significant conformational change. The analysis strongly suggests that ionization of a haem propionate of mitochondrial cytochrome c triggers the alkaline conformation change.


1999 ◽  
Vol 32 (4) ◽  
pp. 519-533 ◽  
Author(s):  
Jun Lu ◽  
Dejian Ma ◽  
Jun Hu ◽  
Wenxia Tang ◽  
Dexu Zhu

1990 ◽  
Vol 265 (1) ◽  
pp. 227-232 ◽  
Author(s):  
B Soussi ◽  
A C Bylund-Fellenius ◽  
T Scherstén ◽  
J Ångström

The interaction between ferricytochrome c and cardiolipin was investigated by 1H n.m.r. at 270 MHz. From the phospholipid-induced changes of the protein spectral features it is concluded that the first 2 equivalents of cardiolipin cause a conformational change at the lower part of the solvent-exposed haem edge, involving a rearrangement of the hydrogen-bond interactions of propionate 6, thus partly accounting for the lowered redox potential of cytochrome c in the presence of cardiolipin. The increased value for the pK of the alkaline isomerization of ferricytochrome c shows that cardiolipin stabilizes the native structure of the protein, indicating that the oxidized form assumes ferrocytochrome c-like properties. Peroxidation of cardiolipin by superoxide radical ions drastically decreases the protein binding to this phospholipid. The implications of this finding, and the likelihood of the ternary cytochrome c-cardiolipin-cytochrome c oxidase complex, for the binding of cytochrome c to cytochrome c oxidase in vivo, are discussed in relation to peroxidative damage following ischaemia and reperfusion.


2006 ◽  
Vol 12 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Nataša Tomášková ◽  
Rastislav Varhač ◽  
Gabriel Žoldák ◽  
Lenka Olekšáková ◽  
Dagmar Sedláková ◽  
...  

1998 ◽  
Vol 275-276 ◽  
pp. 58-64 ◽  
Author(s):  
Jun Lu ◽  
Gaohua Liu ◽  
Yu Chen ◽  
Wenxia Tang ◽  
Dexu Zhu

Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document