scholarly journals Effects of 25-Hydroxyvitamin D3 on Rat Duodenum, Jejunum, and Ileum

1974 ◽  
Vol 249 (4) ◽  
pp. 1156-1161
Author(s):  
Marlin W. Walling ◽  
Murray J. Favus ◽  
Daniel V. Kimberg
Keyword(s):  
1986 ◽  
Vol 34 (2) ◽  
pp. 277-280 ◽  
Author(s):  
M Warembourg ◽  
O Tranchant ◽  
C Perret ◽  
C Desplan ◽  
M Thomasset

We have previously described the molecular cloning of a cDNA fragment synthesized from rat duodenal mRNA coding for a 9000-dalton vitamin D-induced calcium-binding protein (9-kDa CaBP) (3). We now report the use of this cloned cDNA to study the cytological distribution of 9-kDa CaBP mRNA in rat duodenum by in situ hybridization. Tissue sections, fixed in ethanol:acetic acid, were hybridized to the 3H-cDNA probe and processed for autoradiography. The specificity of the CaBP mRNA-DNA hybrid formation was checked using 3H-labeled plasmid pBR322 DNA as a control probe. 9k-Da CaBP mRNA, visualized by silver grains, was found only in the absorptive epithelial cells, and the concentration was greater in the cells at the villous tips than in those of the crypts. The 9k-Da CaBP mRNA was observed mainly in the cytoplasm of the columnar cells and less frequently in the nucleus. Labeling was not seen in the brush border and goblet cells. The submucosa, with Brunner's glands and muscularis, also showed no specific 9-kDa CaBP mRNA concentration. This demonstration of 9-kDa CaBP gene activity in the columnar cells of the rat duodenum illustrates the usefulness of in situ hybridization for characterization of specific cells involved in the expression of 1,25(OH)2 D3 activity.


2009 ◽  
Vol 136 (5) ◽  
pp. A-690
Author(s):  
Chikako Watanabe ◽  
Yasutada Akiba ◽  
Takanari Nakano ◽  
Paul H. Guth ◽  
Eli Engel ◽  
...  

1992 ◽  
Vol 346 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Thomas Griesbacher
Keyword(s):  

2001 ◽  
Vol 281 (3) ◽  
pp. G798-G808 ◽  
Author(s):  
H. Takahara ◽  
M. Fujimura ◽  
S. Taniguchi ◽  
N. Hayashi ◽  
T. Nakamura ◽  
...  

Few previous studies have discussed the changes in serotonin receptor activity in the small intestine of diabetic animals. Therefore, we examined serotonin content in duodenal tissue and dose-dependent effects of serotonin agonists and antagonists on the motor activity of ex vivo vascularly perfused duodenum of streptozotocin (STZ)-diabetic rats. Serotonin content was significantly increased in enterochromaffin cells but not altered in serotonin-containing neurons in STZ-diabetic rats. Motor activity assessed by frequency, amplitude, and percent motility index per 10 min of pressure waves was reduced in the duodenum of diabetic rats, and this reduction was reversed by insulin treatment. Serotonin dose dependently increased the motor activity in control rat duodenum but only a higher concentration of serotonin increased the motor activity in diabetic rats. The 5-hydroxytryptamine (5-HT) receptor subtype 4 (5-HT4) antagonist SB-204070 dose dependently reduced motor activity in both control and diabetic rats, whereas the 5-HT3receptor antagonist azasetron, even at a higher concentration, failed to affect motor activity in diabetic rat duodenum but dose dependently reduced motor activity in control rat duodenum. These results suggest that 5-HT3receptor activity was impaired but 5-HT4receptor activity was intact in STZ-diabetic rat duodenum. Such an impairment of 5-HT3receptor activity may induce the motility disturbance in the small intestine of diabetes mellitus.


2017 ◽  
Vol 313 (2) ◽  
pp. G117-G128 ◽  
Author(s):  
Yasutada Akiba ◽  
Koji Maruta ◽  
Kazuyuki Narimatsu ◽  
Hyder Said ◽  
Izumi Kaji ◽  
...  

Serotonin (5-HT), predominantly synthesized and released by enterochromaffin cells, is implicated in gastrointestinal symptoms such as emesis, abdominal pain, and diarrhea. Because luminal short-chain fatty acids (SCFAs) release 5-HT from enterochromaffin cells, which express the SCFA receptor free fatty acid receptor 2 (FFA2) in rat duodenum, we examined the effects of the selective FFA2 agonist phenylacetamide-1 (PA1) on duodenal 5-HT release with consequent bicarbonate secretion [duodenal bicarbonate secretion (DBS)] and on indomethacin (IND)-induced enteropathy. Intestinal injury was induced by IND (10 mg/kg sc) with or without PA1. We measured DBS in vivo in a duodenal loop perfused with PA1 while measuring 5-HT released in the portal vein. Duodenal blood flow was measured by laser-Doppler flowmetry. IND induced small intestinal ulcers with duodenal sparing. PA1 given with IND (IND + PA1) dose dependently induced duodenal erosions. IND + PA1-induced duodenal lesions were inhibited by the FFA2 antagonist GLPG-0974, ondansetron, or omeprazole but not by RS-23597 or atropine. Luminal perfusion of PA1 augmented DBS accompanied by increased portal blood 5-HT concentrations with approximately eight times more release at 0.1 mM than at 1 µM, with the effects inhibited by coperfusion of GLPG-0974. Luminal PA1 at 1 µM increased, but at 0.1 mM diminished, duodenal blood flow. Cosuperfusion of PA1 (0.1 mM) decreased acid-induced hyperemia, further reduced by IND pretreatment but restored by ondansetron. These results suggest that, although FFA2 activation enhances duodenal mucosal defenses, FFA2 overactivation during ulcerogenic cyclooxygenase inhibition may increase the vulnerability of the duodenal mucosa to gastric acid via excessive 5-HT release and 5-HT3receptor activation, implicated in foregut-related symptoms such as emesis and epigastralgia.NEW & NOTEWORTHY Luminal free fatty acid receptor 2 agonists stimulate enterochromaffin cells and release serotonin, which enhances mucosal defenses in rat duodenum. However, overdriving serotonin release with high luminal concentrations of free fatty acid 2 ligands such as short-chain fatty acids injures the mucosa by decreasing mucosal blood flow. These results are likely implicated in serotonin-related dyspeptic symptom generation because of small intestinal bacterial overgrowth, which is hypothesized to generate excess SCFAs in the foregut, overdriving serotonin release from enterochromaffin cells.


1978 ◽  
Vol 235 (5) ◽  
pp. E539 ◽  
Author(s):  
M W Walling ◽  
A K Mircheff ◽  
C H Van Os ◽  
E M Wright

The subcellular distributions of adenylate cyclase and guanylate cyclase were determined for the mature enterocyte from the rat duodenum. Brush-border and basolateral membranes were prepared from isolated cells by an analytical isolation procedure, and multiple linear regression analysis was used to obtain a quantitative estimate of the distribution of recovered cyclase activities between the brush borders and basolateral membranes. Adenylate cyclase was largely confined to the basolateral surface of the epithelium, whereas guanylate cyclase was found on the brush-border and basolateral membrane fractions in the ratio 2.4:1. There was no evidence for the presence of nucleotide cyclases in the cytosol. Guanylate cyclase in both the brush-border and basolateral membranes was stimulated by epinephrine, insulin, and Triton X-100, but not by carbachol. Adenylate cyclase was not influenced by epinephrine, but was markedly stimulated by NaF and vasoactive intestinal peptide. These results are discussed in relation to the effects of hormones on transport across the small intestine.


1992 ◽  
Vol 107 (4) ◽  
pp. 991-995 ◽  
Author(s):  
Teresa Feres ◽  
Antonio C.M. Paiva ◽  
Therezinha B. Paiva

Sign in / Sign up

Export Citation Format

Share Document