scholarly journals Glycosylphosphatidylinositol-anchored and core protein-intercalated heparan sulfate proteoglycans in rat ovarian granulosa cells have distinct secretory, endocytotic, and intracellular degradative pathways.

1992 ◽  
Vol 267 (14) ◽  
pp. 9505-9511 ◽  
Author(s):  
M Yanagishita
2020 ◽  
Vol 68 (12) ◽  
pp. 841-862 ◽  
Author(s):  
Nan Li ◽  
Madeline R. Spetz ◽  
Mitchell Ho

Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.


2021 ◽  
Vol 22 (12) ◽  
pp. 6574
Author(s):  
Valeria De Pasquale ◽  
Miriam Shasa Quiccione ◽  
Simona Tafuri ◽  
Luigi Avallone ◽  
Luigi Michele Pavone

Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.


1992 ◽  
Vol 285 (1) ◽  
pp. 25-33 ◽  
Author(s):  
D J McQuillan ◽  
R J Midura ◽  
V C Hascall ◽  
M Yanagishita

The heparan sulphate (HS) proteoglycans associated with the cell layer of a rat osteosarcoma cell line [UMR 106-01 (BSP)] were compared with similar cell-associated proteoglycans from other cells, and their interaction with the plasma membrane was studied. HS proteoglycans were metabolically labelled by incubation of cell cultures with [3H]glucosamine or [3H]leucine and [35S]sulphate. HS proteoglycan core protein preparation generated by heparitinase digestion of the major species from UMR 106-01 (BSP) cells co-migrated on PAGE with identical preparations from ovarian granulosa cells and parathyroid cells (at approximately 70 kDa). The hydrophobic nature of the major HS proteoglycans from these diverse cell lines, based on elution position from octyl-Sepharose, were also comparable. Linkages of the HS proteoglycan to the cell membrane were investigated by labelling plasma-membrane preparations with a lipid soluble photoactivatable reagent, 3-(trifluoromethyl)-3- (m-[125I]iodophenyl)diazirine (TID), which selectively labels plasma-membrane-spanning peptide domains. Purified HS proteoglycan from UMR 106-01 (BSP) cells was shown to be accessible to the [125I]TID, and the core protein portion of the molecule was labelled, confirming its close association with the plasma membrane. Approx. 36% of 35S-labelled HS proteoglycans were released from the cell surface by phospholipase C (Bacillus thuringiensis), which specifically cleaves phosphatidylinositol-linked proteins. In the presence of insulin, the metabolism of the phospholipase C-sensitive population was unaltered; however, release of the phospholipase C-insensitive population into the medium was increased. These data indicate that a subpopulation of HS proteoglycans are covalently bound to the plasma membrane by a glycosylphosphatidylinositol structure, with the remainder representing those species directly inserted into the plasma membrane via a hydrophobic peptide domain. These observations are similar to those reported for ovarian granulosa cells [Yanagishita & McQuillan (1989) J. Biol. Chem. 264 17551-17558], and thus may represent a general phenomenon for many cell types.


Glycobiology ◽  
2001 ◽  
Vol 11 (3) ◽  
pp. 183-194 ◽  
Author(s):  
M. Princivalle ◽  
S. Hasan ◽  
G. Hosseini ◽  
A. I. de Agostini

Sign in / Sign up

Export Citation Format

Share Document