scholarly journals The Role of Glypicans in Cancer Progression and Therapy

2020 ◽  
Vol 68 (12) ◽  
pp. 841-862 ◽  
Author(s):  
Nan Li ◽  
Madeline R. Spetz ◽  
Mitchell Ho

Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.

2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Shuhei Yamada

AbstractChondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix of animal tissues. CS chains are covalently bound to a core protein to form a proteoglycan, which is involved in various biological events including cell proliferation, migration, and invasion. Their functions are executed by regulating the activity of bioactive proteins, such as growth factors, morphogens, and cytokines. This review article focuses on the catabolism of CS. This catabolism predominantly occurs in lysosomes to control the activity of CS-proteoglycans. CS chains are fragmented by endo-type glycosidase(s), and the resulting oligosaccharides are then cleaved into monosaccharide moieties from the nonreducing end by exoglycosidases and sulfatases. However, the endo-type glycosidase responsible for the systemic catabolism of CS has not yet been identified. Based on recent advances in studies on hyaluronidases, which were previously considered to be hyaluronan-degrading enzymes, it appears that they recognize CS as their original substrate rather than hyaluronan and acquired hyaluronan-hydrolyzing activity at a relatively late stage of evolution.


1993 ◽  
Vol 268 (14) ◽  
pp. 10160-10167
Author(s):  
Z.S. Ji ◽  
W.J. Brecht ◽  
R.D. Miranda ◽  
M.M. Hussain ◽  
T.L. Innerarity ◽  
...  

2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


1994 ◽  
Vol 13 (sup1) ◽  
pp. 35-37 ◽  
Author(s):  
Christian Chabannon ◽  
Patrice Mannoni

2018 ◽  
Vol 19 (10) ◽  
pp. 3028 ◽  
Author(s):  
Cameron Walker ◽  
Elijah Mojares ◽  
Armando del Río Hernández

The immense diversity of extracellular matrix (ECM) proteins confers distinct biochemical and biophysical properties that influence cell phenotype. The ECM is highly dynamic as it is constantly deposited, remodelled, and degraded during development until maturity to maintain tissue homeostasis. The ECM’s composition and organization are spatiotemporally regulated to control cell behaviour and differentiation, but dysregulation of ECM dynamics leads to the development of diseases such as cancer. The chemical cues presented by the ECM have been appreciated as key drivers for both development and cancer progression. However, the mechanical forces present due to the ECM have been largely ignored but recently recognized to play critical roles in disease progression and malignant cell behaviour. Here, we review the ways in which biophysical forces of the microenvironment influence biochemical regulation and cell phenotype during key stages of human development and cancer progression.


Sign in / Sign up

Export Citation Format

Share Document